223 lines
7.3 KiB
Python
223 lines
7.3 KiB
Python
"""
|
||
Streamlit Web界面
|
||
为Media Agent提供友好的Web界面
|
||
"""
|
||
|
||
import os
|
||
import sys
|
||
import streamlit as st
|
||
from datetime import datetime
|
||
import json
|
||
import locale
|
||
|
||
# 设置UTF-8编码环境
|
||
os.environ['PYTHONIOENCODING'] = 'utf-8'
|
||
os.environ['PYTHONUTF8'] = '1'
|
||
|
||
# 设置系统编码
|
||
try:
|
||
locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')
|
||
except locale.Error:
|
||
try:
|
||
locale.setlocale(locale.LC_ALL, 'C.UTF-8')
|
||
except locale.Error:
|
||
pass
|
||
|
||
# 添加src目录到Python路径
|
||
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
|
||
|
||
from MediaEngine import DeepSearchAgent, Config
|
||
from config import DEEPSEEK_API_KEY, BOCHA_Web_Search_API_KEY, GEMINI_API_KEY
|
||
|
||
|
||
def main():
|
||
"""主函数"""
|
||
st.set_page_config(
|
||
page_title="Media Agent",
|
||
page_icon="",
|
||
layout="wide"
|
||
)
|
||
|
||
st.title("Media Agent")
|
||
st.markdown("具备强大多模态能力的AI代理")
|
||
st.markdown("突破传统文本交流限制,广泛的浏览抖音、快手、小红书的视频、图文、直播")
|
||
st.markdown("使用现代化搜索引擎提供的诸如日历卡、天气卡、股票卡等多模态结构化信息进一步增强能力")
|
||
|
||
# 检查URL参数
|
||
try:
|
||
# 尝试使用新版本的query_params
|
||
query_params = st.query_params
|
||
auto_query = query_params.get('query', '')
|
||
auto_search = query_params.get('auto_search', 'false').lower() == 'true'
|
||
except AttributeError:
|
||
# 兼容旧版本
|
||
query_params = st.experimental_get_query_params()
|
||
auto_query = query_params.get('query', [''])[0]
|
||
auto_search = query_params.get('auto_search', ['false'])[0].lower() == 'true'
|
||
|
||
# ----- 配置被硬编码 -----
|
||
# 强制使用 Gemini
|
||
llm_provider = "gemini"
|
||
model_name = "gemini-2.5-pro"
|
||
# 默认高级配置
|
||
max_reflections = 2
|
||
max_content_length = 20000
|
||
|
||
# 简化的研究查询展示区域
|
||
|
||
# 如果有自动查询,使用它作为默认值,否则显示占位符
|
||
display_query = auto_query if auto_query else "等待从主页面接收分析内容..."
|
||
|
||
# 只读的查询展示区域
|
||
st.text_area(
|
||
"当前查询",
|
||
value=display_query,
|
||
height=100,
|
||
disabled=True,
|
||
help="查询内容由主页面的搜索框控制",
|
||
label_visibility="hidden"
|
||
)
|
||
|
||
# 自动搜索逻辑
|
||
start_research = False
|
||
query = auto_query
|
||
|
||
if auto_search and auto_query and 'auto_search_executed' not in st.session_state:
|
||
st.session_state.auto_search_executed = True
|
||
start_research = True
|
||
elif auto_query and not auto_search:
|
||
st.warning("等待搜索启动信号...")
|
||
|
||
# 验证配置
|
||
if start_research:
|
||
if not query.strip():
|
||
st.error("请输入研究查询")
|
||
return
|
||
|
||
# 由于强制使用Gemini,检查相关的API密钥
|
||
if not GEMINI_API_KEY:
|
||
st.error("请在您的配置文件(config.py)中设置GEMINI_API_KEY")
|
||
return
|
||
if not BOCHA_Web_Search_API_KEY:
|
||
st.error("请在您的配置文件(config.py)中设置BOCHA_Web_Search_API_KEY")
|
||
return
|
||
|
||
# 自动使用配置文件中的API密钥
|
||
gemini_key = GEMINI_API_KEY
|
||
bocha_key = BOCHA_Web_Search_API_KEY
|
||
|
||
# 创建配置
|
||
config = Config(
|
||
deepseek_api_key=None,
|
||
openai_api_key=None,
|
||
gemini_api_key=gemini_key,
|
||
bocha_api_key=bocha_key,
|
||
default_llm_provider=llm_provider,
|
||
deepseek_model="deepseek-chat", # 保留默认值以兼容
|
||
openai_model="gpt-4o-mini", # 保留默认值以兼容
|
||
gemini_model=model_name,
|
||
max_reflections=max_reflections,
|
||
max_content_length=max_content_length,
|
||
output_dir="media_engine_streamlit_reports"
|
||
)
|
||
|
||
# 执行研究
|
||
execute_research(query, config)
|
||
|
||
|
||
def execute_research(query: str, config: Config):
|
||
"""执行研究"""
|
||
try:
|
||
# 创建进度条
|
||
progress_bar = st.progress(0)
|
||
status_text = st.empty()
|
||
|
||
# 初始化Agent
|
||
status_text.text("正在初始化Agent...")
|
||
agent = DeepSearchAgent(config)
|
||
st.session_state.agent = agent
|
||
|
||
progress_bar.progress(10)
|
||
|
||
# 生成报告结构
|
||
status_text.text("正在生成报告结构...")
|
||
agent._generate_report_structure(query)
|
||
progress_bar.progress(20)
|
||
|
||
# 处理段落
|
||
total_paragraphs = len(agent.state.paragraphs)
|
||
for i in range(total_paragraphs):
|
||
status_text.text(f"正在处理段落 {i + 1}/{total_paragraphs}: {agent.state.paragraphs[i].title}")
|
||
|
||
# 初始搜索和总结
|
||
agent._initial_search_and_summary(i)
|
||
progress_value = 20 + (i + 0.5) / total_paragraphs * 60
|
||
progress_bar.progress(int(progress_value))
|
||
|
||
# 反思循环
|
||
agent._reflection_loop(i)
|
||
agent.state.paragraphs[i].research.mark_completed()
|
||
|
||
progress_value = 20 + (i + 1) / total_paragraphs * 60
|
||
progress_bar.progress(int(progress_value))
|
||
|
||
# 生成最终报告
|
||
status_text.text("正在生成最终报告...")
|
||
final_report = agent._generate_final_report()
|
||
progress_bar.progress(90)
|
||
|
||
# 保存报告
|
||
status_text.text("正在保存报告...")
|
||
agent._save_report(final_report)
|
||
progress_bar.progress(100)
|
||
|
||
status_text.text("研究完成!")
|
||
|
||
# 显示结果
|
||
display_results(agent, final_report)
|
||
|
||
except Exception as e:
|
||
st.error(f"研究过程中发生错误: {str(e)}")
|
||
|
||
|
||
def display_results(agent: DeepSearchAgent, final_report: str):
|
||
"""显示研究结果"""
|
||
st.header("研究结果")
|
||
|
||
# 结果标签页(已移除下载选项)
|
||
tab1, tab2 = st.tabs(["研究小结", "引用信息"])
|
||
|
||
with tab1:
|
||
st.markdown(final_report)
|
||
|
||
with tab2:
|
||
# 段落详情
|
||
st.subheader("段落详情")
|
||
for i, paragraph in enumerate(agent.state.paragraphs):
|
||
with st.expander(f"段落 {i + 1}: {paragraph.title}"):
|
||
st.write("**预期内容:**", paragraph.content)
|
||
st.write("**最终内容:**", paragraph.research.latest_summary[:300] + "..."
|
||
if len(paragraph.research.latest_summary) > 300
|
||
else paragraph.research.latest_summary)
|
||
st.write("**搜索次数:**", paragraph.research.get_search_count())
|
||
st.write("**反思次数:**", paragraph.research.reflection_iteration)
|
||
|
||
# 搜索历史
|
||
st.subheader("搜索历史")
|
||
all_searches = []
|
||
for paragraph in agent.state.paragraphs:
|
||
all_searches.extend(paragraph.research.search_history)
|
||
|
||
if all_searches:
|
||
for i, search in enumerate(all_searches):
|
||
with st.expander(f"搜索 {i + 1}: {search.query}"):
|
||
st.write("**URL:**", search.url)
|
||
st.write("**标题:**", search.title)
|
||
st.write("**内容预览:**",
|
||
search.content[:200] + "..." if len(search.content) > 200 else search.content)
|
||
if search.score:
|
||
st.write("**相关度评分:**", search.score)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main() |