重构主要管道代码,实现更完善的架构设计: - 添加统一配置管理系统,支持数据、模型、训练和可视化参数的集中管理 - 实现完整的日志记录系统,支持文件和控制台输出,提供结构化的运行日志 - 集成性能监控工具,包括执行时间、内存使用情况的实时跟踪和分析 - 新增模型检查点功能,支持模型和评估结果的自动保存与加载 - 添加数据验证器,确保数据完整性和预测结果的正确性 - 实现模型工厂模式,便于扩展和管理不同类型的机器学习模型 - 优化异常处理机制,提供专门的异常类型分类 - 更新依赖项,添加psutil库用于系统资源监控 输出文件管理改进: - 将评估结果和训练后的模型保存到outputs目录 - 添加日志文件到.gitignore,确保版本控制清洁 - 提供完整的模型评估指标对比分析
39 lines
855 B
TOML
39 lines
855 B
TOML
[build-system]
|
|
requires = ["hatchling"]
|
|
build-backend = "hatchling.build"
|
|
|
|
[project]
|
|
name = "stackingdemo"
|
|
version = "0.1.0"
|
|
description = "Stacking Ensemble Model with Ridge/XGBoost/LightGBM/MLP + Decision Tree"
|
|
readme = "README.md"
|
|
requires-python = ">=3.10"
|
|
dependencies = [
|
|
"lightgbm>=4.6.0",
|
|
"numpy>=2.2.6",
|
|
"pandas>=2.3.3",
|
|
"scikit-learn>=1.7.2",
|
|
"xgboost>=3.1.2",
|
|
"matplotlib>=3.8.0",
|
|
"seaborn>=0.13.2",
|
|
"psutil>=7.1.3",
|
|
]
|
|
|
|
[tool.uv]
|
|
python-install-mirror = "https://gh-proxy.com/https://github.com/astral-sh/python-build-standalone/releases/download/"
|
|
|
|
[[tool.uv.index]]
|
|
name = "tuna"
|
|
url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple"
|
|
default = true
|
|
|
|
[tool.hatch.build.targets.wheel]
|
|
packages = ["src/stacking_model"]
|
|
|
|
[tool.black]
|
|
line-length = 88
|
|
|
|
[tool.ruff]
|
|
line-length = 88
|
|
select = ["E", "F", "W"]
|