Init commit (After clear history).

This commit is contained in:
drd_vic
2025-10-22 11:41:55 +08:00
commit b839be0397
15 changed files with 2235 additions and 0 deletions

64
.gitignore vendored Normal file
View File

@@ -0,0 +1,64 @@
# Python-generated files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
dist/
build/
wheels/
*.egg-info/
*.egg
# Virtual environments
venv/
.env/
.venv/
env/
# IDE files
.vscode/
.idea/
*.suo
*.ntvs*
*.njsproj
*.sln
*.sw?
# Logs
*.log
# Runtime data
pids
*.pid
*.seed
*.pid.lock
# OS generated files
.DS_Store
.DS_Store?
._*
.Spotlight-V100
.Trashes
ehthumbs.db
Thumbs.db
# Data directory
data/
# Model checkpoints
*.pth
*.pt
# Model Visualizations
*.png
*.jpg
*.jpeg
*.gif
*.svg
*.pdf
*.html
*.npz

1
.python-version Normal file
View File

@@ -0,0 +1 @@
3.13

21
LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2025 Runda Dong
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

237
README.md Normal file
View File

@@ -0,0 +1,237 @@
# CIFAR100 图像分类项目
[![Python](https://img.shields.io/badge/Python-3.13+-blue.svg)](https://python.org)
[![PyTorch](https://img.shields.io/badge/PyTorch-2.8.0+-red.svg)](https://pytorch.org)
[![License](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE)
[![Version](https://img.shields.io/badge/Version-0.2.0-orange.svg)](https://github.com/yourusername/Cifar100/releases)
## 项目简介
本项目使用PyTorch框架和Wide ResNet模型对CIFAR100数据集进行训练和分类。项目采用标准的src layout结构代码模块化便于维护和扩展。特别针对不同显存大小的GPU进行了优化支持从2G到高性能GPU的多种配置。
## 主要特性
- 🚀 **多种显存优化配置**支持2G、4G、8G及高性能GPU的预定义配置
- 📊 **训练可视化**:自动生成训练过程的损失和准确率曲线
- 🔧 **灵活的配置系统**:易于自定义模型参数和训练策略
- 💾 **显存监控工具**:提供显存使用测试脚本
- 📦 **打包分发**支持wheel包安装和分发
## 项目结构
```
Cifar100/
├── src/
│ └── cifar100/
│ ├── __init__.py # 包初始化文件
│ ├── config.py # 配置管理(多显存配置)
│ ├── data.py # 数据加载和增强
│ ├── model.py # WideResNet模型定义
│ ├── trainer.py # 训练器和评估功能
│ └── visualizer.py # 训练过程可视化
├── main.py # 主训练脚本
├── test_memory.py # 显存测试脚本
├── README_4GB.md # 4G显存优化详细说明
├── pyproject.toml # 项目依赖和配置
├── plots/ # 训练图表保存目录
└── dist/ # 构建输出目录
```
## 数据集信息
- **数据集**CIFAR-100
- **图片尺寸**32×32像素
- **数据集类别数量**100
- **数据量**60,000张图片
- **数据划分**
- 训练数据50,000张每个类别500张
- 测试数据10,000张每个类别100张
## 模型架构
本项目使用Wide ResNet (WRN) 模型,支持多种配置:
### 默认配置 (4G显存优化)
- **模型结构**WRN-22-4
- **深度**22层
- **宽度因子**4
- **Dropout率**0.3
### 其他可用配置
- **2G显存**WRN-16-2优先考虑显存使用
- **8G显存**WRN-28-10平衡性能和显存
- **高性能**WRN-34-10优先考虑性能
## 数据增强策略
训练集数据增强包括:
- 随机裁剪32×32填充4像素
- 随机水平翻转
- 颜色抖动ColorJitter
- 随机旋转RandomRotation
- 随机仿射变换RandomAffine
- 随机擦除RandomErasing
- Cutout数据增强随机遮挡部分图像
测试集只进行基本的归一化处理。
## 训练策略
- **优化器**SGDNesterov动量权重衰减5e-4
- **学习率调度**:余弦退火调度器 + 学习率预热
- **标签平滑**平滑因子0.1
- **梯度累积**:根据显存大小自动调整
- **早停机制**30个epoch的耐心值
## 安装说明
### 环境要求
- Python 3.13 或更高版本
- PyTorch 2.8.0 或更高版本
- CUDA兼容的GPU推荐
### 使用uv安装推荐
```bash
# 克隆仓库
git clone https://117.50.214.20:8989/root/Cifar100.git
cd Cifar100
# 使用uv创建虚拟环境并安装依赖
uv sync
```
### 使用pip安装
```bash
# 从源码安装
pip install .
# 或安装预构建的wheel包
pip install dist/cifar100-0.2.0-py3-none-any.whl
```
## 使用方法
### 基本使用
```python
# 在main.py中选择配置
config_name = "4gb" # 可选: "2gb", "4gb", "8gb", "high_performance"
# 运行训练
python main.py
```
### 显存测试
测试不同配置的显存使用情况:
```bash
python test_memory.py
```
### 自定义配置
```python
from src.cifar100.config import get_config
# 获取预定义配置
config = get_config("4gb")
# 使用自定义参数
custom_config = {
"depth": 28,
"width_factor": 8,
"dropout": 0.3,
"batch_size": 96,
"learning_rate": 0.1,
"accumulation_steps": 1,
"warmup_epochs": 5,
"description": "自定义配置"
}
```
## 性能基准
在4G显存的GPU上使用默认配置WRN-22-4
- **训练时间**约2-3小时200个epoch
- **峰值显存使用**约3.5GB
- **预期测试准确率**70%+
## 模型保存
- 每20个epoch保存一次检查点
- 自动保存最佳模型(基于测试准确率)
- 模型文件格式:`wrn{depth}_{width_factor}_epoch_{epoch}.pth`
## 训练可视化
训练过程会自动生成以下图表并保存在 `./plots`目录:
- 训练和验证损失曲线
- 训练和验证准确率曲线
- 学习率变化曲线
## 高级功能
### 分布式训练
```python
# 在main.py中设置
use_ddp = True # 启用分布式数据并行
```
### 混合精度训练
```python
# 在main.py中设置
use_amp = True # 启用自动混合精度
```
### 自定义数据增强
```python
# 在src/cifar100/data.py中修改
train_transform = transforms.Compose([
# 添加自定义变换
])
```
## 故障排除
### 常见问题
1. **显存不足**
- 尝试使用更小的配置(如"2gb"
- 减小批量大小或增加梯度累积步数
2. **训练速度慢**
- 确保使用CUDA加速
- 考虑使用更大的批量大小(如果显存允许)
3. **准确率不理想**
- 尝试调整学习率
- 增加训练轮数
- 尝试不同的数据增强策略
许可证
本项目采用MIT许可证 - 详见[LICENSE](LICENSE)文件
## 致谢
- [CIFAR-100数据集](https://www.cs.toronto.edu/~kriz/cifar.html)
- [Wide ResNet论文](https://arxiv.org/abs/1605.07146)
- [PyTorch](https://pytorch.org/)
## 版本历史
- **v0.2.0**:添加多显存配置支持,训练可视化
- **v0.1.0**初始版本基本WideResNet实现

159
README_4GB.md Normal file
View File

@@ -0,0 +1,159 @@
# WideResNet 4G显存优化
本项目针对WideResNet模型在4G显存上的训练进行了全面优化解决了准确率瓶颈问题并提供了多种显存配置选项。
## 优化措施
### 1. 数据增强增强
- 添加了颜色抖动ColorJitter
- 添加了随机旋转RandomRotation
- 添加了随机仿射变换RandomAffine
- 添加了随机擦除RandomErasing
### 2. 模型结构优化
- 将激活函数从ReLU替换为GELU
- 在全连接层前添加了额外的Dropout层
- 优化了Block结构
- 添加了专门针对WideResNet的权重初始化方法
### 3. 训练策略改进
- **标签平滑Label Smoothing**使用平滑因子0.1
- **余弦退火学习率调度器**替代原来的MultiStepLR
- **Nesterov动量**在SGD优化器中启用nesterov=True
- **学习率预热**前5个epoch进行学习率预热
- **梯度累积**:减少显存使用
- **早停机制**添加30个epoch的耐心值
## 配置选项
项目提供了四种预定义配置适用于不同显存大小的GPU
### 4G显存配置默认
```python
config_name = "4gb"
```
- 模型深度: 22
- 宽度因子: 4
- 批量大小: 64
- 梯度累积步数: 2
### 2G显存配置
```python
config_name = "2gb"
```
- 模型深度: 16
- 宽度因子: 2
- 批量大小: 32
- 梯度累积步数: 4
### 8G显存配置
```python
config_name = "8gb"
```
- 模型深度: 28
- 宽度因子: 10
- 批量大小: 128
- 梯度累积步数: 1
### 高性能配置
```python
config_name = "high_performance"
```
- 模型深度: 34
- 宽度因子: 10
- 批量大小: 128
- 梯度累积步数: 1
## 使用方法
### 1. 选择配置
`main.py`中修改配置名称:
```python
config_name = "4gb" # 可以改为 "2gb", "8gb" 或 "high_performance"
```
### 2. 运行训练
```bash
python main.py
```
### 3. 测试显存使用
运行显存测试脚本,查看不同配置的显存使用情况:
```bash
python test_memory.py
```
## 文件结构
```
Cifar100/
├── src/cifar100/
│ ├── __init__.py
│ ├── config.py # 配置文件
│ ├── data.py # 数据加载和增强
│ ├── model.py # WideResNet模型定义
│ ├── trainer.py # 训练器
│ └── visualizer.py # 训练可视化
├── main.py # 主训练脚本
├── test_memory.py # 显存测试脚本
└── plots/ # 训练图表保存目录
```
## 预期效果
这些优化措施应该能够:
1. **提高模型泛化能力**:通过增强的数据增强和标签平滑
2. **加速收敛**通过余弦退火调度器和Nesterov动量
3. **防止过拟合**通过标签平滑、Dropout和早停机制
4. **突破准确率瓶颈**综合以上所有改进应该能显著超过52%-53%的准确率
## 自定义配置
如果预定义配置不满足需求,可以在 `src/cifar100/config.py`中添加自定义配置:
```python
CUSTOM_CONFIG = {
"depth": 28,
"width_factor": 8,
"dropout": 0.3,
"batch_size": 96,
"learning_rate": 0.1,
"accumulation_steps": 1,
"warmup_epochs": 5,
"description": "自定义配置"
}
```
然后在 `get_config`函数中添加对应的映射。
## 注意事项
1. 确保PyTorch版本支持CUDA
2. 如果遇到显存不足,尝试减小批量大小或增加梯度累积步数
3. 训练过程中会保存最佳模型和定期检查点
4. 训练图表会保存在 `./plots`目录中
## 性能基准
在4G显存的GPU上使用默认配置WRN-22-4
- 训练时间: 约2-3小时200个epoch
- 峰值显存使用: 约3.5GB
- 预期测试准确率: 70%+

163
main.py Normal file
View File

@@ -0,0 +1,163 @@
import torch
import os
import gc
import numpy as np
import random
from src.cifar100.data import Data
from src.cifar100.model import WideResNet
from src.cifar100.trainer import Trainer
from src.cifar100.visualizer import TrainingVisualizer
from src.cifar100.config import get_config, print_config
def set_seed(seed=42):
"""设置随机种子以确保结果可重现"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# 确保CUDA操作是确定性的
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main():
# 设置随机种子
set_seed(42)
# 获取配置 - 默认使用4G显存配置
config_name = "4gb" # 可以改为 "2gb", "8gb" 或 "high_performance"
config = get_config(config_name)
print_config(config)
# 从配置中获取参数
batch_size = config["batch_size"]
threads = 2 # 减少线程数量以降低内存使用
epochs = 200
learning_rate = config["learning_rate"]
accumulation_steps = config["accumulation_steps"]
warmup_epochs = config["warmup_epochs"]
# 设置环境变量以优化内存使用
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
# 检查是否有GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# 如果使用GPU设置一些优化选项
if torch.cuda.is_available():
# 启用cudnn基准测试优化卷积操作
torch.backends.cudnn.benchmark = True
# 禁用cudnn确定性可能提高性能
torch.backends.cudnn.deterministic = False
# 加载数据
data = Data(batch_size, threads)
# 创建模型 - 使用配置中的参数
model = WideResNet(
depth=config["depth"],
width_factor=config["width_factor"],
dropout=config["dropout"],
in_channels=3,
labels=100
).to(device)
# 创建训练器 - 启用标签平滑
trainer = Trainer(model, device, use_label_smoothing=True, smoothing=0.1)
# 创建可视化器
visualizer = TrainingVisualizer(save_dir="./plots")
# 定义优化器和学习率调度器 - 使用余弦退火调度器
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=5e-4, nesterov=True)
# 使用余弦退火调度器通常比MultiStepLR效果更好
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs, eta_min=1e-4)
trainer.set_optimizer(optimizer, scheduler)
# 添加学习率预热功能 - 对WideResNet特别有效
def warmup_lr(epoch, warmup_epochs=warmup_epochs, base_lr=learning_rate):
if epoch < warmup_epochs:
return base_lr * (epoch + 1) / warmup_epochs
return base_lr
# 保存初始学习率
base_lr = learning_rate
# 训练模型
best_acc = 0
patience = 30 # 早停耐心值
patience_counter = 0
for epoch in range(epochs):
print(f'Epoch: {epoch+1}/{epochs}')
# 应用学习率预热
if epoch < warmup_epochs: # 前warmup_epochs个epoch进行预热
current_lr = warmup_lr(epoch, warmup_epochs=warmup_epochs, base_lr=base_lr)
for param_group in optimizer.param_groups:
param_group['lr'] = current_lr
# 使用梯度累积accumulation_steps表示每accumulation_steps个batch更新一次权重
train_metrics = trainer.train_epoch(data.train, accumulation_steps=accumulation_steps)
# 测试模型
test_metrics = trainer.evaluate(data.test)
# 更新可视化器数据
visualizer.update(
epoch=epoch+1,
train_loss=train_metrics["loss"],
train_acc=train_metrics["accuracy"],
test_loss=test_metrics["loss"],
test_acc=test_metrics["accuracy"]
)
print(f'Epoch: {epoch+1}/{epochs} | Train Loss: {train_metrics["loss"]:.3f} | Train Acc: {train_metrics["accuracy"]:.3f}%')
print(f'Epoch: {epoch+1}/{epochs} | Test Loss: {test_metrics["loss"]:.3f} | Test Acc: {test_metrics["accuracy"]:.3f}%')
print(f'Learning Rate: {optimizer.param_groups[0]["lr"]:.6f}')
# 保存最佳模型
current_acc = test_metrics["accuracy"]
if current_acc > best_acc:
best_acc = current_acc
trainer.save_model(f'best_model.pth')
print(f'New best accuracy: {best_acc:.3f}% - Model saved: best_model.pth')
patience_counter = 0 # 重置耐心计数器
else:
patience_counter += 1
# 每10个epoch显示一次训练进度图表
if (epoch + 1) % 10 == 0:
visualizer.plot_metrics(save=True, show=False)
print("训练进度图表已更新")
# 保存模型
if (epoch + 1) % 20 == 0:
model_name = f'wrn{config["depth"]}_{config["width_factor"]}_epoch_{epoch+1}.pth'
trainer.save_model(model_name)
print(f'Model saved: {model_name}')
# 早停检查
if patience_counter >= patience:
print(f"Early stopping triggered after {patience} epochs without improvement.")
break
# 每个epoch结束后进行垃圾回收
gc.collect()
torch.cuda.empty_cache()
# 训练结束后,显示最终结果
print("\n训练完成!生成最终可视化图表...")
visualizer.plot_metrics(save=True, show=True)
visualizer.plot_combined(save=True, show=True)
visualizer.save_data()
visualizer.print_summary()
print(f"最佳测试准确率: {best_acc:.3f}%")
if __name__ == "__main__":
main()

30
pyproject.toml Normal file
View File

@@ -0,0 +1,30 @@
[project]
name = "cifar100"
version = "0.2.0"
description = "Cifar100 classification using PyTorch"
readme = "README.md"
requires-python = ">=3.13"
dependencies = [
"matplotlib>=3.10.7",
"numpy>=2.3.3",
"torch>=2.8.0",
"torchvision>=0.23.0",
]
[tool.uv]
python-install-mirror = "https://gh-proxy.com/https://github.com/astral-sh/python-build-standalone/releases/download/"
[tool.uv.sources]
torch = {index = "pytorch"}
torchaudio = {index = "pytorch"}
torchvision = {index = "pytorch"}
[[tool.uv.index]]
name = "tuna"
url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple"
default = true
[[tool.uv.index]]
name = "pytorch"
url = "https://download.pytorch.org/whl/cu129"
explicit = true

1
src/cifar100/__init__.py Normal file
View File

@@ -0,0 +1 @@
# CIFAR100 图像分类项目包

96
src/cifar100/config.py Normal file
View File

@@ -0,0 +1,96 @@
"""
WideResNet配置文件
针对不同显存大小的优化配置
"""
# 4G显存优化配置 - 平衡性能和显存使用
CONFIG_4GB = {
"depth": 22,
"width_factor": 4,
"dropout": 0.3,
"batch_size": 64,
"learning_rate": 0.1,
"accumulation_steps": 2,
"warmup_epochs": 5,
"description": "适用于4G显存的平衡配置性能和显存使用兼顾"
}
# 2G显存优化配置 - 优先考虑显存使用
CONFIG_2GB = {
"depth": 16,
"width_factor": 2,
"dropout": 0.3,
"batch_size": 32,
"learning_rate": 0.1,
"accumulation_steps": 4,
"warmup_epochs": 5,
"description": "适用于2G显存的配置优先考虑显存使用"
}
# 8G显存优化配置 - 优先考虑性能
CONFIG_8GB = {
"depth": 28,
"width_factor": 10,
"dropout": 0.3,
"batch_size": 128,
"learning_rate": 0.1,
"accumulation_steps": 1,
"warmup_epochs": 5,
"description": "适用于8G显存的配置优先考虑性能"
}
# 高性能配置 - 需要大量显存
CONFIG_HIGH_PERFORMANCE = {
"depth": 34,
"width_factor": 10,
"dropout": 0.3,
"batch_size": 128,
"learning_rate": 0.1,
"accumulation_steps": 1,
"warmup_epochs": 5,
"description": "高性能配置,需要大量显存支持"
}
def get_config(config_name="4gb"):
"""
根据配置名称获取配置
Args:
config_name: 配置名称,可选值为 "4gb", "2gb", "8gb", "high_performance"
Returns:
配置字典
"""
configs = {
"4gb": CONFIG_4GB,
"2gb": CONFIG_2GB,
"8gb": CONFIG_8GB,
"high_performance": CONFIG_HIGH_PERFORMANCE
}
if config_name.lower() not in configs:
raise ValueError(f"未知的配置名称: {config_name}. 可用配置: {list(configs.keys())}")
return configs[config_name.lower()]
def print_config(config):
"""
打印配置信息
Args:
config: 配置字典
"""
print("=" * 50)
print(f"配置: {config.get('description', '自定义配置')}")
print("=" * 50)
print(f"模型深度: {config['depth']}")
print(f"宽度因子: {config['width_factor']}")
print(f"Dropout率: {config['dropout']}")
print(f"批量大小: {config['batch_size']}")
print(f"学习率: {config['learning_rate']}")
print(f"梯度累积步数: {config['accumulation_steps']}")
print(f"预热轮数: {config['warmup_epochs']}")
print("=" * 50)
if __name__ == "__main__":
# 打印所有配置信息
for name in ["4gb", "2gb", "8gb", "high_performance"]:
config = get_config(name)
print_config(config)

136
src/cifar100/data.py Normal file
View File

@@ -0,0 +1,136 @@
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torchvision
import random
class Cutout:
def __init__(self, size=8, p=0.3): # 减小遮挡大小和概率
self.size = size
self.half_size = size // 2
self.p = p
def __call__(self, image):
# 取一个随机的tensor值如果大于p则返回image
if torch.rand([1]).item() > self.p:
return image
# 否则图片部分需要取0设置的左侧、顶部为[-half, image_size - half]范围的均匀分布采样
left = torch.randint(-self.half_size, image.size(1) - self.half_size, [1]).item()
top = torch.randint(-self.half_size, image.size(2) - self.half_size, [1]).item()
# 右侧和底部与原来的尺寸比较取小
right = min(image.size(1), left + self.size)
bottom = min(image.size(2), top + self.size)
# 对所有图片的对应部分设置为0
image[:, max(0, left): right, max(0, top): bottom] = 0
return image
class RandomErasing:
"""随机擦除数据增强"""
def __init__(self, p=0.5, scale=(0.02, 0.2), ratio=(0.3, 3.3), value=0):
self.p = p
self.scale = scale
self.ratio = ratio
self.value = value
def __call__(self, img):
if random.random() > self.p:
return img
for attempt in range(100):
area = img.size(1) * img.size(2)
target_area = random.uniform(self.scale[0], self.scale[1]) * area
aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
h = int(round((target_area * aspect_ratio) ** 0.5))
w = int(round((target_area / aspect_ratio) ** 0.5))
if w < img.size(2) and h < img.size(1):
x1 = random.randint(0, img.size(1) - h)
y1 = random.randint(0, img.size(2) - w)
if img.size(0) == 3:
img[0, x1:x1+h, y1:y1+w] = self.value
img[1, x1:x1+h, y1:y1+w] = self.value
img[2, x1:x1+h, y1:y1+w] = self.value
else:
img[0, x1:x1+h, y1:y1+w] = self.value
return img
return img
def get_statistics():
# 获取数据集的均值与标准差 - 使用更内存友好的方式
train_set = torchvision.datasets.CIFAR100(root="./data", train=True, download=True,
transform=transforms.ToTensor())
# 使用迭代器逐批计算,避免一次性加载整个数据集
loader = DataLoader(train_set, batch_size=100, shuffle=False, num_workers=0)
mean = torch.zeros(3)
std = torch.zeros(3)
total_samples = 0
for data, _ in loader:
batch_samples = data.size(0)
data = data.view(batch_samples, data.size(1), -1)
mean += data.mean(2).sum(0)
std += data.std(2).sum(0)
total_samples += batch_samples
mean /= total_samples
std /= total_samples
return mean, std
class Data:
def __init__(self, batch_size, threads):
mean, std = get_statistics()
# 训练集的数据增强 - 增强版
train_transform = transforms.Compose([
# 随机裁剪
torchvision.transforms.RandomCrop(size=(32, 32), padding=4),
# 依概率水平翻转
torchvision.transforms.RandomHorizontalFlip(),
# 添加颜色抖动
torchvision.transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
# 添加随机旋转
torchvision.transforms.RandomRotation(15),
# 添加随机仿射变换
torchvision.transforms.RandomAffine(degrees=0, translate=(0.1, 0.1), shear=5),
# Tensor化
transforms.ToTensor(),
# 归一化
transforms.Normalize(mean, std),
# 模拟遮掩
Cutout(),
# 随机擦除
RandomErasing(p=0.3)
])
# 测试集只进行tensor化与归一化
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
# 训练集数据类
train_set = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=train_transform)
# 测试集数据类
test_set = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=test_transform)
# 训练集、测试集加载器 - 优化内存使用
# 减少工作线程数量设置pin_memory为True以优化GPU传输
self.train = torch.utils.data.DataLoader(
train_set,
batch_size=batch_size,
shuffle=True,
num_workers=min(threads, 2), # 限制工作线程数量
pin_memory=True, # 优化GPU数据传输
persistent_workers=True if threads > 0 else False # 保持工作进程活跃,减少创建开销
)
self.test = torch.utils.data.DataLoader(
test_set,
batch_size=batch_size,
shuffle=False,
num_workers=min(threads, 2), # 限制工作线程数量
pin_memory=True, # 优化GPU数据传输
persistent_workers=True if threads > 0 else False # 保持工作进程活跃,减少创建开销
)
self.classes = train_set.classes

105
src/cifar100/model.py Normal file
View File

@@ -0,0 +1,105 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
class LabelSmoothingLoss(nn.Module):
"""标签平滑损失函数"""
def __init__(self, classes, smoothing=0.1):
super(LabelSmoothingLoss, self).__init__()
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.classes = classes
self.criterion = nn.KLDivLoss(reduction='batchmean')
def forward(self, pred, target):
pred = F.log_softmax(pred, dim=1)
true_dist = torch.zeros_like(pred)
true_dist.fill_(self.smoothing / (self.classes - 1))
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
return self.criterion(pred, true_dist)
class Block(nn.Module):
def __init__(self, in_channels, out_channels, stride, depth, dropout):
super(Block, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = stride
self.depth = depth
self.dropout = dropout
self.layer = self._make_layer()
# 用于shortcut的调整 - 使用更高效的实现
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def _make_layer(self):
layers = []
# 第一个block需要进行下采样
layers.append(nn.Conv2d(self.in_channels, self.out_channels, kernel_size=3, stride=self.stride, padding=1, bias=False))
layers.append(nn.BatchNorm2d(self.out_channels))
# 使用GELU激活函数可能比ReLU效果更好
layers.append(nn.GELU())
if self.dropout > 0:
layers.append(nn.Dropout(p=self.dropout))
# 剩余的blocks不需要下采样
for _ in range(self.depth):
layers.append(nn.Conv2d(self.out_channels, self.out_channels, kernel_size=3, stride=1, padding=1, bias=False))
layers.append(nn.BatchNorm2d(self.out_channels))
# 使用GELU激活函数
layers.append(nn.GELU())
if self.dropout > 0:
layers.append(nn.Dropout(p=self.dropout))
return nn.Sequential(*layers)
def forward(self, x):
out = self.layer(x)
out += self.shortcut(x)
out = F.gelu(out) # 使用GELU激活函数
return out
class WideResNet(nn.Module):
def __init__(self, depth: int, width_factor: int, dropout: float, in_channels: int, labels: int):
super(WideResNet, self).__init__()
#
self.filters = [16, 1 * 16 * width_factor, 2 * 16 * width_factor, 4 * 16 * width_factor]
self.block_depth = (depth - 4) // (3 * 2) - 1
self.f = nn.Sequential(OrderedDict([
("0_convolution", nn.Conv2d(in_channels, self.filters[0], (3, 3), stride=1, padding=1, bias=False)),
("1_block", Block(self.filters[0], self.filters[1], 1, self.block_depth, dropout)),
("2_block", Block(self.filters[1], self.filters[2], 2, self.block_depth, dropout)),
("3_block", Block(self.filters[2], self.filters[3], 2, self.block_depth, dropout)),
("4_pooling", nn.AdaptiveAvgPool2d((1, 1))),
("5_flatten", nn.Flatten()),
("6_dropout", nn.Dropout(p=0.3)), # 在全连接层前添加dropout
("6_linear", nn.Linear(self.filters[3], labels))
]))
# 权重初始化 - 专门针对WideResNet的初始化方法
self._initialize_weights()
def _initialize_weights(self):
"""专门针对WideResNet的权重初始化方法"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
# 使用Kaiming初始化适合ReLU/GELU激活函数
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def forward(self, x):
return self.f(x)

122
src/cifar100/trainer.py Normal file
View File

@@ -0,0 +1,122 @@
import torch
import torch.nn as nn
import gc
import os
from src.cifar100.model import LabelSmoothingLoss
class Trainer:
def __init__(self, model, device, use_label_smoothing=True, smoothing=0.1):
self.model = model
self.device = device
# 使用标签平滑损失函数
if use_label_smoothing:
self.criterion = LabelSmoothingLoss(classes=100, smoothing=smoothing)
else:
self.criterion = nn.CrossEntropyLoss()
# 设置环境变量以优化内存使用
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
def set_optimizer(self, optimizer, scheduler=None):
self.optimizer = optimizer
self.scheduler = scheduler
def train_epoch(self, train_loader, accumulation_steps=2):
self.model.train()
train_loss = 0.0
correct = 0
total = 0
self.optimizer.zero_grad()
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(self.device, non_blocking=True), targets.to(self.device, non_blocking=True)
# 前向传播
outputs = self.model(inputs)
loss = self.criterion(outputs, targets)
# 梯度裁剪 - 防止梯度爆炸WideResNet对梯度裁剪敏感
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
# 梯度累积 - 减少显存使用特别适合4G显存
loss = loss / accumulation_steps
loss.backward()
# 每accumulation_steps步更新一次权重
if (batch_idx + 1) % accumulation_steps == 0:
self.optimizer.step()
self.optimizer.zero_grad()
# 统计 - 使用标准交叉熵计算准确率,而不是标签平滑
with torch.no_grad():
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
train_loss += loss.item() * accumulation_steps # 恢复原始loss值
# 打印训练进度
if batch_idx % 100 == 0:
print(f'Batch: {batch_idx}/{len(train_loader)} | Loss: {train_loss/(batch_idx+1):.3f} | Acc: {100.*correct/total:.3f}%')
# 定期清理显存和内存 - 对WideResNet特别重要
if batch_idx % 50 == 0:
# 清除不再引用的变量
del outputs, loss, inputs, targets
torch.cuda.empty_cache()
# 处理剩余的批次
if (len(train_loader) % accumulation_steps) != 0:
self.optimizer.step()
self.optimizer.zero_grad()
# 调整学习率
if self.scheduler is not None:
self.scheduler.step()
# 手动触发垃圾回收
gc.collect()
torch.cuda.empty_cache()
return {
'loss': train_loss / len(train_loader),
'accuracy': 100. * correct / total
}
def evaluate(self, test_loader):
self.model.eval()
test_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(self.device, non_blocking=True), targets.to(self.device, non_blocking=True)
outputs = self.model(inputs)
# 使用标准交叉熵计算测试损失,而不是标签平滑
loss = nn.CrossEntropyLoss()(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# 定期清理显存和内存
if batch_idx % 50 == 0:
# 清除不再引用的变量
del outputs, loss, inputs, targets
torch.cuda.empty_cache()
# 手动触发垃圾回收
gc.collect()
torch.cuda.empty_cache()
return {
'loss': test_loss / len(test_loader),
'accuracy': 100. * correct / total
}
def save_model(self, path):
torch.save(self.model.state_dict(), path)

214
src/cifar100/visualizer.py Normal file
View File

@@ -0,0 +1,214 @@
import matplotlib.pyplot as plt
import numpy as np
import os
from datetime import datetime
class TrainingVisualizer:
"""
训练过程可视化工具类
用于绘制训练过程中的损失和准确率曲线
"""
def __init__(self, save_dir="./plots"):
"""
初始化可视化器
参数:
save_dir (str): 图表保存目录
"""
self.save_dir = save_dir
self.train_losses = []
self.train_accuracies = []
self.test_losses = []
self.test_accuracies = []
self.epochs = []
# 确保保存目录存在
os.makedirs(save_dir, exist_ok=True)
# 设置matplotlib中文字体支持
plt.rcParams['font.sans-serif'] = ['SimHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False
def update(self, epoch, train_loss, train_acc, test_loss, test_acc):
"""
更新训练数据
参数:
epoch (int): 当前epoch
train_loss (float): 训练损失
train_acc (float): 训练准确率
test_loss (float): 测试损失
test_acc (float): 测试准确率
"""
self.epochs.append(epoch)
self.train_losses.append(train_loss)
self.train_accuracies.append(train_acc)
self.test_losses.append(test_loss)
self.test_accuracies.append(test_acc)
def plot_metrics(self, save=True, show=True):
"""
绘制训练和测试的损失和准确率曲线
参数:
save (bool): 是否保存图表
show (bool): 是否显示图表
"""
if not self.epochs:
print("没有可用的训练数据")
return
# 创建子图
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
# 绘制损失曲线
ax1.plot(self.epochs, self.train_losses, 'b-', label='训练损失')
ax1.plot(self.epochs, self.test_losses, 'r-', label='测试损失')
ax1.set_title('损失曲线')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss')
ax1.legend()
ax1.grid(True)
# 绘制准确率曲线
ax2.plot(self.epochs, self.train_accuracies, 'b-', label='训练准确率')
ax2.plot(self.epochs, self.test_accuracies, 'r-', label='测试准确率')
ax2.set_title('准确率曲线')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Accuracy (%)')
ax2.legend()
ax2.grid(True)
# 调整布局
plt.tight_layout()
# 保存图表
if save:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_path = os.path.join(self.save_dir, f"training_metrics_{timestamp}.png")
plt.savefig(save_path)
print(f"图表已保存至: {save_path}")
# 显示图表
if show:
plt.show()
def plot_combined(self, save=True, show=True):
"""
绘制组合图表,将损失和准确率放在同一图中
参数:
save (bool): 是否保存图表
show (bool): 是否显示图表
"""
if not self.epochs:
print("没有可用的训练数据")
return
fig, ax1 = plt.subplots(figsize=(10, 6))
# 绘制损失曲线
color = 'tab:red'
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss', color=color)
ax1.plot(self.epochs, self.train_losses, 'r-', label='训练损失', alpha=0.7)
ax1.plot(self.epochs, self.test_losses, 'r--', label='测试损失', alpha=0.7)
ax1.tick_params(axis='y', labelcolor=color)
ax1.legend(loc='upper left')
ax1.grid(True)
# 创建第二个y轴用于准确率
ax2 = ax1.twinx()
color = 'tab:blue'
ax2.set_ylabel('Accuracy (%)', color=color)
ax2.plot(self.epochs, self.train_accuracies, 'b-', label='训练准确率', alpha=0.7)
ax2.plot(self.epochs, self.test_accuracies, 'b--', label='测试准确率', alpha=0.7)
ax2.tick_params(axis='y', labelcolor=color)
ax2.legend(loc='upper right')
plt.title('训练过程指标')
plt.tight_layout()
# 保存图表
if save:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_path = os.path.join(self.save_dir, f"training_combined_{timestamp}.png")
plt.savefig(save_path)
print(f"图表已保存至: {save_path}")
# 显示图表
if show:
plt.show()
def save_data(self, filename=None):
"""
保存训练数据到文件
参数:
filename (str): 保存文件名如果为None则使用时间戳
"""
if not self.epochs:
print("没有可用的训练数据")
return
if filename is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"training_data_{timestamp}.npz"
filepath = os.path.join(self.save_dir, filename)
np.savez(
filepath,
epochs=self.epochs,
train_losses=self.train_losses,
train_accuracies=self.train_accuracies,
test_losses=self.test_losses,
test_accuracies=self.test_accuracies
)
print(f"训练数据已保存至: {filepath}")
def load_data(self, filepath):
"""
从文件加载训练数据
参数:
filepath (str): 数据文件路径
"""
if not os.path.exists(filepath):
print(f"文件不存在: {filepath}")
return
data = np.load(filepath)
self.epochs = data['epochs'].tolist()
self.train_losses = data['train_losses'].tolist()
self.train_accuracies = data['train_accuracies'].tolist()
self.test_losses = data['test_losses'].tolist()
self.test_accuracies = data['test_accuracies'].tolist()
print(f"训练数据已从 {filepath} 加载")
def print_summary(self):
"""
打印训练结果摘要
"""
if not self.epochs:
print("没有可用的训练数据")
return
print("\n===== 训练结果摘要 =====")
print(f"总训练轮数: {len(self.epochs)}")
# 找出最佳测试准确率
best_test_acc_idx = np.argmax(self.test_accuracies)
best_test_acc = self.test_accuracies[best_test_acc_idx]
best_epoch = self.epochs[best_test_acc_idx]
print(f"最佳测试准确率: {best_test_acc:.2f}% (Epoch {best_epoch})")
print(f"最终训练损失: {self.train_losses[-1]:.4f}")
print(f"最终测试损失: {self.test_losses[-1]:.4f}")
print(f"最终训练准确率: {self.train_accuracies[-1]:.2f}%")
print(f"最终测试准确率: {self.test_accuracies[-1]:.2f}%")
# 计算过拟合程度
overfitting = self.train_accuracies[-1] - self.test_accuracies[-1]
print(f"过拟合程度: {overfitting:.2f}%")
print("========================\n")

167
test_memory.py Normal file
View File

@@ -0,0 +1,167 @@
"""
显存使用测试脚本
用于测试不同WideResNet配置的显存使用情况
"""
import torch
import torch.nn as nn
from src.cifar100.model import WideResNet
from src.cifar100.config import get_config, print_config
def test_memory_usage(config_name):
"""
测试指定配置的显存使用情况
Args:
config_name: 配置名称
"""
# 获取配置
config = get_config(config_name)
print_config(config)
# 检查是否有GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
if not torch.cuda.is_available():
print("未检测到CUDA设备无法测试显存使用")
return
# 清空显存
torch.cuda.empty_cache()
# 记录初始显存
initial_memory = torch.cuda.memory_allocated() / 1024**2 # MB
print(f"初始显存使用: {initial_memory:.2f} MB")
# 创建模型
model = WideResNet(
depth=config["depth"],
width_factor=config["width_factor"],
dropout=config["dropout"],
in_channels=3,
labels=100
).to(device)
# 记录模型加载后的显存
model_memory = torch.cuda.memory_allocated() / 1024**2 # MB
print(f"模型加载后显存使用: {model_memory:.2f} MB")
print(f"模型参数占用显存: {model_memory - initial_memory:.2f} MB")
# 计算模型参数数量
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"总参数数量: {total_params:,}")
print(f"可训练参数数量: {trainable_params:,}")
# 测试前向传播的显存使用
batch_size = config["batch_size"]
print(f"\n测试前向传播 (批量大小: {batch_size})...")
# 创建随机输入
inputs = torch.randn(batch_size, 3, 32, 32).to(device)
# 记录前向传播前的显存
before_forward = torch.cuda.memory_allocated() / 1024**2 # MB
# 前向传播
with torch.no_grad():
outputs = model(inputs)
# 记录前向传播后的显存
after_forward = torch.cuda.memory_allocated() / 1024**2 # MB
print(f"前向传播前显存使用: {before_forward:.2f} MB")
print(f"前向传播后显存使用: {after_forward:.2f} MB")
print(f"前向传播增加显存: {after_forward - before_forward:.2f} MB")
# 测试训练时的显存使用
print(f"\n测试训练过程 (梯度累积步数: {config['accumulation_steps']})...")
# 创建标签
targets = torch.randint(0, 100, (batch_size,)).to(device)
# 创建优化器和损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
criterion = nn.CrossEntropyLoss()
# 记录训练前的显存
before_training = torch.cuda.memory_allocated() / 1024**2 # MB
# 训练步骤
model.train()
optimizer.zero_grad()
for step in range(config["accumulation_steps"]):
outputs = model(inputs)
loss = criterion(outputs, targets)
loss = loss / config["accumulation_steps"]
loss.backward()
optimizer.step()
# 记录训练后的显存
after_training = torch.cuda.memory_allocated() / 1024**2 # MB
print(f"训练前显存使用: {before_training:.2f} MB")
print(f"训练后显存使用: {after_training:.2f} MB")
print(f"训练增加显存: {after_training - before_training:.2f} MB")
# 记录峰值显存
peak_memory = torch.cuda.max_memory_allocated() / 1024**2 # MB
print(f"\n峰值显存使用: {peak_memory:.2f} MB")
# 清理
del model, inputs, targets, outputs, loss
torch.cuda.empty_cache()
return peak_memory
def main():
print("=" * 60)
print("WideResNet 显存使用测试")
print("=" * 60)
# 测试所有配置
configs = ["2gb", "4gb", "8gb", "high_performance"]
results = {}
for config_name in configs:
print(f"\n{'='*60}")
print(f"测试配置: {config_name}")
print(f"{'='*60}")
try:
peak_memory = test_memory_usage(config_name)
results[config_name] = peak_memory
except Exception as e:
print(f"测试配置 {config_name} 时出错: {str(e)}")
results[config_name] = None
# 打印汇总结果
print(f"\n{'='*60}")
print("测试结果汇总")
print(f"{'='*60}")
for config_name, peak_memory in results.items():
if peak_memory is not None:
print(f"{config_name:>15}: {peak_memory:>8.2f} MB")
else:
print(f"{config_name:>15}: {'测试失败':>8}")
# 给出建议
print(f"\n{'='*60}")
print("建议")
print(f"{'='*60}")
if "4gb" in results and results["4gb"] is not None:
if results["4gb"] < 4000:
print("4GB显存配置适合您的GPU")
else:
print("4GB显存配置可能超出您的GPU显存限制建议使用2GB配置")
if "2gb" in results and results["2gb"] is not None:
if results["2gb"] < 2000:
print("2GB显存配置适合您的GPU")
else:
print("2GB显存配置可能超出您的GPU显存限制")
if __name__ == "__main__":
main()

719
uv.lock generated Normal file
View File

@@ -0,0 +1,719 @@
version = 1
revision = 3
requires-python = ">=3.13"
resolution-markers = [
"python_full_version >= '3.14'",
"(python_full_version < '3.14' and platform_machine != 'aarch64') or (python_full_version < '3.14' and platform_python_implementation != 'CPython') or (python_full_version < '3.14' and sys_platform != 'linux')",
"python_full_version < '3.14' and platform_machine == 'aarch64' and platform_python_implementation == 'CPython' and sys_platform == 'linux'",
]
[[package]]
name = "cifar100"
version = "0.0.1"
source = { virtual = "." }
dependencies = [
{ name = "matplotlib" },
{ name = "numpy" },
{ name = "torch" },
{ name = "torchvision", version = "0.23.0", source = { registry = "https://download.pytorch.org/whl/cu129" }, marker = "python_full_version < '3.14' and platform_machine == 'aarch64' and platform_python_implementation == 'CPython' and sys_platform == 'linux'" },
{ name = "torchvision", version = "0.23.0+cu129", source = { registry = "https://download.pytorch.org/whl/cu129" }, marker = "python_full_version >= '3.14' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'" },
]
[package.metadata]
requires-dist = [
{ name = "matplotlib", specifier = ">=3.10.7" },
{ name = "numpy", specifier = ">=2.3.3" },
{ name = "torch", specifier = ">=2.8.0", index = "https://download.pytorch.org/whl/cu129" },
{ name = "torchvision", specifier = ">=0.23.0", index = "https://download.pytorch.org/whl/cu129" },
]
[[package]]
name = "contourpy"
version = "1.3.3"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
dependencies = [
{ name = "numpy" },
]
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/58/01/1253e6698a07380cd31a736d248a3f2a50a7c88779a1813da27503cadc2a/contourpy-1.3.3.tar.gz", hash = "sha256:083e12155b210502d0bca491432bb04d56dc3432f95a979b429f2848c3dbe880", size = 13466174, upload-time = "2025-07-26T12:03:12.549Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/68/35/0167aad910bbdb9599272bd96d01a9ec6852f36b9455cf2ca67bd4cc2d23/contourpy-1.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:177fb367556747a686509d6fef71d221a4b198a3905fe824430e5ea0fda54eb5", size = 293257, upload-time = "2025-07-26T12:01:39.367Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/96/e4/7adcd9c8362745b2210728f209bfbcf7d91ba868a2c5f40d8b58f54c509b/contourpy-1.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d002b6f00d73d69333dac9d0b8d5e84d9724ff9ef044fd63c5986e62b7c9e1b1", size = 274034, upload-time = "2025-07-26T12:01:40.645Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/73/23/90e31ceeed1de63058a02cb04b12f2de4b40e3bef5e082a7c18d9c8ae281/contourpy-1.3.3-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:348ac1f5d4f1d66d3322420f01d42e43122f43616e0f194fc1c9f5d830c5b286", size = 334672, upload-time = "2025-07-26T12:01:41.942Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ed/93/b43d8acbe67392e659e1d984700e79eb67e2acb2bd7f62012b583a7f1b55/contourpy-1.3.3-cp313-cp313-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:655456777ff65c2c548b7c454af9c6f33f16c8884f11083244b5819cc214f1b5", size = 381234, upload-time = "2025-07-26T12:01:43.499Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/46/3b/bec82a3ea06f66711520f75a40c8fc0b113b2a75edb36aa633eb11c4f50f/contourpy-1.3.3-cp313-cp313-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:644a6853d15b2512d67881586bd03f462c7ab755db95f16f14d7e238f2852c67", size = 385169, upload-time = "2025-07-26T12:01:45.219Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/4b/32/e0f13a1c5b0f8572d0ec6ae2f6c677b7991fafd95da523159c19eff0696a/contourpy-1.3.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4debd64f124ca62069f313a9cb86656ff087786016d76927ae2cf37846b006c9", size = 362859, upload-time = "2025-07-26T12:01:46.519Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/33/71/e2a7945b7de4e58af42d708a219f3b2f4cff7386e6b6ab0a0fa0033c49a9/contourpy-1.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a15459b0f4615b00bbd1e91f1b9e19b7e63aea7483d03d804186f278c0af2659", size = 1332062, upload-time = "2025-07-26T12:01:48.964Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/12/fc/4e87ac754220ccc0e807284f88e943d6d43b43843614f0a8afa469801db0/contourpy-1.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ca0fdcd73925568ca027e0b17ab07aad764be4706d0a925b89227e447d9737b7", size = 1403932, upload-time = "2025-07-26T12:01:51.979Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a6/2e/adc197a37443f934594112222ac1aa7dc9a98faf9c3842884df9a9d8751d/contourpy-1.3.3-cp313-cp313-win32.whl", hash = "sha256:b20c7c9a3bf701366556e1b1984ed2d0cedf999903c51311417cf5f591d8c78d", size = 185024, upload-time = "2025-07-26T12:01:53.245Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/18/0b/0098c214843213759692cc638fce7de5c289200a830e5035d1791d7a2338/contourpy-1.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:1cadd8b8969f060ba45ed7c1b714fe69185812ab43bd6b86a9123fe8f99c3263", size = 226578, upload-time = "2025-07-26T12:01:54.422Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8a/9a/2f6024a0c5995243cd63afdeb3651c984f0d2bc727fd98066d40e141ad73/contourpy-1.3.3-cp313-cp313-win_arm64.whl", hash = "sha256:fd914713266421b7536de2bfa8181aa8c699432b6763a0ea64195ebe28bff6a9", size = 193524, upload-time = "2025-07-26T12:01:55.73Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/c0/b3/f8a1a86bd3298513f500e5b1f5fd92b69896449f6cab6a146a5d52715479/contourpy-1.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:88df9880d507169449d434c293467418b9f6cbe82edd19284aa0409e7fdb933d", size = 306730, upload-time = "2025-07-26T12:01:57.051Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3f/11/4780db94ae62fc0c2053909b65dc3246bd7cecfc4f8a20d957ad43aa4ad8/contourpy-1.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:d06bb1f751ba5d417047db62bca3c8fde202b8c11fb50742ab3ab962c81e8216", size = 287897, upload-time = "2025-07-26T12:01:58.663Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ae/15/e59f5f3ffdd6f3d4daa3e47114c53daabcb18574a26c21f03dc9e4e42ff0/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e4e6b05a45525357e382909a4c1600444e2a45b4795163d3b22669285591c1ae", size = 326751, upload-time = "2025-07-26T12:02:00.343Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0f/81/03b45cfad088e4770b1dcf72ea78d3802d04200009fb364d18a493857210/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ab3074b48c4e2cf1a960e6bbeb7f04566bf36b1861d5c9d4d8ac04b82e38ba20", size = 375486, upload-time = "2025-07-26T12:02:02.128Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0c/ba/49923366492ffbdd4486e970d421b289a670ae8cf539c1ea9a09822b371a/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:6c3d53c796f8647d6deb1abe867daeb66dcc8a97e8455efa729516b997b8ed99", size = 388106, upload-time = "2025-07-26T12:02:03.615Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9f/52/5b00ea89525f8f143651f9f03a0df371d3cbd2fccd21ca9b768c7a6500c2/contourpy-1.3.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:50ed930df7289ff2a8d7afeb9603f8289e5704755c7e5c3bbd929c90c817164b", size = 352548, upload-time = "2025-07-26T12:02:05.165Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/32/1d/a209ec1a3a3452d490f6b14dd92e72280c99ae3d1e73da74f8277d4ee08f/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4feffb6537d64b84877da813a5c30f1422ea5739566abf0bd18065ac040e120a", size = 1322297, upload-time = "2025-07-26T12:02:07.379Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bc/9e/46f0e8ebdd884ca0e8877e46a3f4e633f6c9c8c4f3f6e72be3fe075994aa/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2b7e9480ffe2b0cd2e787e4df64270e3a0440d9db8dc823312e2c940c167df7e", size = 1391023, upload-time = "2025-07-26T12:02:10.171Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b9/70/f308384a3ae9cd2209e0849f33c913f658d3326900d0ff5d378d6a1422d2/contourpy-1.3.3-cp313-cp313t-win32.whl", hash = "sha256:283edd842a01e3dcd435b1c5116798d661378d83d36d337b8dde1d16a5fc9ba3", size = 196157, upload-time = "2025-07-26T12:02:11.488Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b2/dd/880f890a6663b84d9e34a6f88cded89d78f0091e0045a284427cb6b18521/contourpy-1.3.3-cp313-cp313t-win_amd64.whl", hash = "sha256:87acf5963fc2b34825e5b6b048f40e3635dd547f590b04d2ab317c2619ef7ae8", size = 240570, upload-time = "2025-07-26T12:02:12.754Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/80/99/2adc7d8ffead633234817ef8e9a87115c8a11927a94478f6bb3d3f4d4f7d/contourpy-1.3.3-cp313-cp313t-win_arm64.whl", hash = "sha256:3c30273eb2a55024ff31ba7d052dde990d7d8e5450f4bbb6e913558b3d6c2301", size = 199713, upload-time = "2025-07-26T12:02:14.4Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/72/8b/4546f3ab60f78c514ffb7d01a0bd743f90de36f0019d1be84d0a708a580a/contourpy-1.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fde6c716d51c04b1c25d0b90364d0be954624a0ee9d60e23e850e8d48353d07a", size = 292189, upload-time = "2025-07-26T12:02:16.095Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fd/e1/3542a9cb596cadd76fcef413f19c79216e002623158befe6daa03dbfa88c/contourpy-1.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:cbedb772ed74ff5be440fa8eee9bd49f64f6e3fc09436d9c7d8f1c287b121d77", size = 273251, upload-time = "2025-07-26T12:02:17.524Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b1/71/f93e1e9471d189f79d0ce2497007731c1e6bf9ef6d1d61b911430c3db4e5/contourpy-1.3.3-cp314-cp314-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22e9b1bd7a9b1d652cd77388465dc358dafcd2e217d35552424aa4f996f524f5", size = 335810, upload-time = "2025-07-26T12:02:18.9Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/91/f9/e35f4c1c93f9275d4e38681a80506b5510e9327350c51f8d4a5a724d178c/contourpy-1.3.3-cp314-cp314-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a22738912262aa3e254e4f3cb079a95a67132fc5a063890e224393596902f5a4", size = 382871, upload-time = "2025-07-26T12:02:20.418Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b5/71/47b512f936f66a0a900d81c396a7e60d73419868fba959c61efed7a8ab46/contourpy-1.3.3-cp314-cp314-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:afe5a512f31ee6bd7d0dda52ec9864c984ca3d66664444f2d72e0dc4eb832e36", size = 386264, upload-time = "2025-07-26T12:02:21.916Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/04/5f/9ff93450ba96b09c7c2b3f81c94de31c89f92292f1380261bd7195bea4ea/contourpy-1.3.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f64836de09927cba6f79dcd00fdd7d5329f3fccc633468507079c829ca4db4e3", size = 363819, upload-time = "2025-07-26T12:02:23.759Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3e/a6/0b185d4cc480ee494945cde102cb0149ae830b5fa17bf855b95f2e70ad13/contourpy-1.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:1fd43c3be4c8e5fd6e4f2baeae35ae18176cf2e5cced681cca908addf1cdd53b", size = 1333650, upload-time = "2025-07-26T12:02:26.181Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/43/d7/afdc95580ca56f30fbcd3060250f66cedbde69b4547028863abd8aa3b47e/contourpy-1.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:6afc576f7b33cf00996e5c1102dc2a8f7cc89e39c0b55df93a0b78c1bd992b36", size = 1404833, upload-time = "2025-07-26T12:02:28.782Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e2/e2/366af18a6d386f41132a48f033cbd2102e9b0cf6345d35ff0826cd984566/contourpy-1.3.3-cp314-cp314-win32.whl", hash = "sha256:66c8a43a4f7b8df8b71ee1840e4211a3c8d93b214b213f590e18a1beca458f7d", size = 189692, upload-time = "2025-07-26T12:02:30.128Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/7d/c2/57f54b03d0f22d4044b8afb9ca0e184f8b1afd57b4f735c2fa70883dc601/contourpy-1.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:cf9022ef053f2694e31d630feaacb21ea24224be1c3ad0520b13d844274614fd", size = 232424, upload-time = "2025-07-26T12:02:31.395Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/18/79/a9416650df9b525737ab521aa181ccc42d56016d2123ddcb7b58e926a42c/contourpy-1.3.3-cp314-cp314-win_arm64.whl", hash = "sha256:95b181891b4c71de4bb404c6621e7e2390745f887f2a026b2d99e92c17892339", size = 198300, upload-time = "2025-07-26T12:02:32.956Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/1f/42/38c159a7d0f2b7b9c04c64ab317042bb6952b713ba875c1681529a2932fe/contourpy-1.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:33c82d0138c0a062380332c861387650c82e4cf1747aaa6938b9b6516762e772", size = 306769, upload-time = "2025-07-26T12:02:34.2Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/c3/6c/26a8205f24bca10974e77460de68d3d7c63e282e23782f1239f226fcae6f/contourpy-1.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:ea37e7b45949df430fe649e5de8351c423430046a2af20b1c1961cae3afcda77", size = 287892, upload-time = "2025-07-26T12:02:35.807Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/66/06/8a475c8ab718ebfd7925661747dbb3c3ee9c82ac834ccb3570be49d129f4/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d304906ecc71672e9c89e87c4675dc5c2645e1f4269a5063b99b0bb29f232d13", size = 326748, upload-time = "2025-07-26T12:02:37.193Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b4/a3/c5ca9f010a44c223f098fccd8b158bb1cb287378a31ac141f04730dc49be/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ca658cd1a680a5c9ea96dc61cdbae1e85c8f25849843aa799dfd3cb370ad4fbe", size = 375554, upload-time = "2025-07-26T12:02:38.894Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/80/5b/68bd33ae63fac658a4145088c1e894405e07584a316738710b636c6d0333/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:ab2fd90904c503739a75b7c8c5c01160130ba67944a7b77bbf36ef8054576e7f", size = 388118, upload-time = "2025-07-26T12:02:40.642Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/40/52/4c285a6435940ae25d7410a6c36bda5145839bc3f0beb20c707cda18b9d2/contourpy-1.3.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7301b89040075c30e5768810bc96a8e8d78085b47d8be6e4c3f5a0b4ed478a0", size = 352555, upload-time = "2025-07-26T12:02:42.25Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/24/ee/3e81e1dd174f5c7fefe50e85d0892de05ca4e26ef1c9a59c2a57e43b865a/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:2a2a8b627d5cc6b7c41a4beff6c5ad5eb848c88255fda4a8745f7e901b32d8e4", size = 1322295, upload-time = "2025-07-26T12:02:44.668Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3c/b2/6d913d4d04e14379de429057cd169e5e00f6c2af3bb13e1710bcbdb5da12/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:fd6ec6be509c787f1caf6b247f0b1ca598bef13f4ddeaa126b7658215529ba0f", size = 1391027, upload-time = "2025-07-26T12:02:47.09Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/93/8a/68a4ec5c55a2971213d29a9374913f7e9f18581945a7a31d1a39b5d2dfe5/contourpy-1.3.3-cp314-cp314t-win32.whl", hash = "sha256:e74a9a0f5e3fff48fb5a7f2fd2b9b70a3fe014a67522f79b7cca4c0c7e43c9ae", size = 202428, upload-time = "2025-07-26T12:02:48.691Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fa/96/fd9f641ffedc4fa3ace923af73b9d07e869496c9cc7a459103e6e978992f/contourpy-1.3.3-cp314-cp314t-win_amd64.whl", hash = "sha256:13b68d6a62db8eafaebb8039218921399baf6e47bf85006fd8529f2a08ef33fc", size = 250331, upload-time = "2025-07-26T12:02:50.137Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ae/8c/469afb6465b853afff216f9528ffda78a915ff880ed58813ba4faf4ba0b6/contourpy-1.3.3-cp314-cp314t-win_arm64.whl", hash = "sha256:b7448cb5a725bb1e35ce88771b86fba35ef418952474492cf7c764059933ff8b", size = 203831, upload-time = "2025-07-26T12:02:51.449Z" },
]
[[package]]
name = "cycler"
version = "0.12.1"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30" },
]
[[package]]
name = "filelock"
version = "3.19.1"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/40/bb/0ab3e58d22305b6f5440629d20683af28959bf793d98d11950e305c1c326/filelock-3.19.1.tar.gz", hash = "sha256:66eda1888b0171c998b35be2bcc0f6d75c388a7ce20c3f3f37aa8e96c2dddf58", size = 17687, upload-time = "2025-08-14T16:56:03.016Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/42/14/42b2651a2f46b022ccd948bca9f2d5af0fd8929c4eec235b8d6d844fbe67/filelock-3.19.1-py3-none-any.whl", hash = "sha256:d38e30481def20772f5baf097c122c3babc4fcdb7e14e57049eb9d88c6dc017d", size = 15988, upload-time = "2025-08-14T16:56:01.633Z" },
]
[[package]]
name = "fonttools"
version = "4.60.1"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/4b/42/97a13e47a1e51a5a7142475bbcf5107fe3a68fc34aef331c897d5fb98ad0/fonttools-4.60.1.tar.gz", hash = "sha256:ef00af0439ebfee806b25f24c8f92109157ff3fac5731dc7867957812e87b8d9", size = 3559823, upload-time = "2025-09-29T21:13:27.129Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/7c/5b/cdd2c612277b7ac7ec8c0c9bc41812c43dc7b2d5f2b0897e15fdf5a1f915/fonttools-4.60.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6f68576bb4bbf6060c7ab047b1574a1ebe5c50a17de62830079967b211059ebb", size = 2825777, upload-time = "2025-09-29T21:12:01.22Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d6/8a/de9cc0540f542963ba5e8f3a1f6ad48fa211badc3177783b9d5cadf79b5d/fonttools-4.60.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:eedacb5c5d22b7097482fa834bda0dafa3d914a4e829ec83cdea2a01f8c813c4", size = 2348080, upload-time = "2025-09-29T21:12:03.785Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/2d/8b/371ab3cec97ee3fe1126b3406b7abd60c8fec8975fd79a3c75cdea0c3d83/fonttools-4.60.1-cp313-cp313-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:b33a7884fabd72bdf5f910d0cf46be50dce86a0362a65cfc746a4168c67eb96c", size = 4903082, upload-time = "2025-09-29T21:12:06.382Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/04/05/06b1455e4bc653fcb2117ac3ef5fa3a8a14919b93c60742d04440605d058/fonttools-4.60.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:2409d5fb7b55fd70f715e6d34e7a6e4f7511b8ad29a49d6df225ee76da76dd77", size = 4960125, upload-time = "2025-09-29T21:12:09.314Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8e/37/f3b840fcb2666f6cb97038793606bdd83488dca2d0b0fc542ccc20afa668/fonttools-4.60.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c8651e0d4b3bdeda6602b85fdc2abbefc1b41e573ecb37b6779c4ca50753a199", size = 4901454, upload-time = "2025-09-29T21:12:11.931Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fd/9e/eb76f77e82f8d4a46420aadff12cec6237751b0fb9ef1de373186dcffb5f/fonttools-4.60.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:145daa14bf24824b677b9357c5e44fd8895c2a8f53596e1b9ea3496081dc692c", size = 5044495, upload-time = "2025-09-29T21:12:15.241Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f8/b3/cede8f8235d42ff7ae891bae8d619d02c8ac9fd0cfc450c5927a6200c70d/fonttools-4.60.1-cp313-cp313-win32.whl", hash = "sha256:2299df884c11162617a66b7c316957d74a18e3758c0274762d2cc87df7bc0272", size = 2217028, upload-time = "2025-09-29T21:12:17.96Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/75/4d/b022c1577807ce8b31ffe055306ec13a866f2337ecee96e75b24b9b753ea/fonttools-4.60.1-cp313-cp313-win_amd64.whl", hash = "sha256:a3db56f153bd4c5c2b619ab02c5db5192e222150ce5a1bc10f16164714bc39ac", size = 2266200, upload-time = "2025-09-29T21:12:20.14Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9a/83/752ca11c1aa9a899b793a130f2e466b79ea0cf7279c8d79c178fc954a07b/fonttools-4.60.1-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:a884aef09d45ba1206712c7dbda5829562d3fea7726935d3289d343232ecb0d3", size = 2822830, upload-time = "2025-09-29T21:12:24.406Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/57/17/bbeab391100331950a96ce55cfbbff27d781c1b85ebafb4167eae50d9fe3/fonttools-4.60.1-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:8a44788d9d91df72d1a5eac49b31aeb887a5f4aab761b4cffc4196c74907ea85", size = 2345524, upload-time = "2025-09-29T21:12:26.819Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3d/2e/d4831caa96d85a84dd0da1d9f90d81cec081f551e0ea216df684092c6c97/fonttools-4.60.1-cp314-cp314-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:e852d9dda9f93ad3651ae1e3bb770eac544ec93c3807888798eccddf84596537", size = 4843490, upload-time = "2025-09-29T21:12:29.123Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/49/13/5e2ea7c7a101b6fc3941be65307ef8df92cbbfa6ec4804032baf1893b434/fonttools-4.60.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:154cb6ee417e417bf5f7c42fe25858c9140c26f647c7347c06f0cc2d47eff003", size = 4944184, upload-time = "2025-09-29T21:12:31.414Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0c/2b/cf9603551c525b73fc47c52ee0b82a891579a93d9651ed694e4e2cd08bb8/fonttools-4.60.1-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:5664fd1a9ea7f244487ac8f10340c4e37664675e8667d6fee420766e0fb3cf08", size = 4890218, upload-time = "2025-09-29T21:12:33.936Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fd/2f/933d2352422e25f2376aae74f79eaa882a50fb3bfef3c0d4f50501267101/fonttools-4.60.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:583b7f8e3c49486e4d489ad1deacfb8d5be54a8ef34d6df824f6a171f8511d99", size = 4999324, upload-time = "2025-09-29T21:12:36.637Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/38/99/234594c0391221f66216bc2c886923513b3399a148defaccf81dc3be6560/fonttools-4.60.1-cp314-cp314-win32.whl", hash = "sha256:66929e2ea2810c6533a5184f938502cfdaea4bc3efb7130d8cc02e1c1b4108d6", size = 2220861, upload-time = "2025-09-29T21:12:39.108Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3e/1d/edb5b23726dde50fc4068e1493e4fc7658eeefcaf75d4c5ffce067d07ae5/fonttools-4.60.1-cp314-cp314-win_amd64.whl", hash = "sha256:f3d5be054c461d6a2268831f04091dc82753176f6ea06dc6047a5e168265a987", size = 2270934, upload-time = "2025-09-29T21:12:41.339Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fb/da/1392aaa2170adc7071fe7f9cfd181a5684a7afcde605aebddf1fb4d76df5/fonttools-4.60.1-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:b6379e7546ba4ae4b18f8ae2b9bc5960936007a1c0e30b342f662577e8bc3299", size = 2894340, upload-time = "2025-09-29T21:12:43.774Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bf/a7/3b9f16e010d536ce567058b931a20b590d8f3177b2eda09edd92e392375d/fonttools-4.60.1-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9d0ced62b59e0430b3690dbc5373df1c2aa7585e9a8ce38eff87f0fd993c5b01", size = 2375073, upload-time = "2025-09-29T21:12:46.437Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9b/b5/e9bcf51980f98e59bb5bb7c382a63c6f6cac0eec5f67de6d8f2322382065/fonttools-4.60.1-cp314-cp314t-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:875cb7764708b3132637f6c5fb385b16eeba0f7ac9fa45a69d35e09b47045801", size = 4849758, upload-time = "2025-09-29T21:12:48.694Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e3/dc/1d2cf7d1cba82264b2f8385db3f5960e3d8ce756b4dc65b700d2c496f7e9/fonttools-4.60.1-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a184b2ea57b13680ab6d5fbde99ccef152c95c06746cb7718c583abd8f945ccc", size = 5085598, upload-time = "2025-09-29T21:12:51.081Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/5d/4d/279e28ba87fb20e0c69baf72b60bbf1c4d873af1476806a7b5f2b7fac1ff/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:026290e4ec76583881763fac284aca67365e0be9f13a7fb137257096114cb3bc", size = 4957603, upload-time = "2025-09-29T21:12:53.423Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/78/d4/ff19976305e0c05aa3340c805475abb00224c954d3c65e82c0a69633d55d/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:f0e8817c7d1a0c2eedebf57ef9a9896f3ea23324769a9a2061a80fe8852705ed", size = 4974184, upload-time = "2025-09-29T21:12:55.962Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/63/22/8553ff6166f5cd21cfaa115aaacaa0dc73b91c079a8cfd54a482cbc0f4f5/fonttools-4.60.1-cp314-cp314t-win32.whl", hash = "sha256:1410155d0e764a4615774e5c2c6fc516259fe3eca5882f034eb9bfdbee056259", size = 2282241, upload-time = "2025-09-29T21:12:58.179Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8a/cb/fa7b4d148e11d5a72761a22e595344133e83a9507a4c231df972e657579b/fonttools-4.60.1-cp314-cp314t-win_amd64.whl", hash = "sha256:022beaea4b73a70295b688f817ddc24ed3e3418b5036ffcd5658141184ef0d0c", size = 2345760, upload-time = "2025-09-29T21:13:00.375Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/c7/93/0dd45cd283c32dea1545151d8c3637b4b8c53cdb3a625aeb2885b184d74d/fonttools-4.60.1-py3-none-any.whl", hash = "sha256:906306ac7afe2156fcf0042173d6ebbb05416af70f6b370967b47f8f00103bbb", size = 1143175, upload-time = "2025-09-29T21:13:24.134Z" },
]
[[package]]
name = "fsspec"
version = "2025.9.0"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/de/e0/bab50af11c2d75c9c4a2a26a5254573c0bd97cea152254401510950486fa/fsspec-2025.9.0.tar.gz", hash = "sha256:19fd429483d25d28b65ec68f9f4adc16c17ea2c7c7bf54ec61360d478fb19c19", size = 304847, upload-time = "2025-09-02T19:10:49.215Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/47/71/70db47e4f6ce3e5c37a607355f80da8860a33226be640226ac52cb05ef2e/fsspec-2025.9.0-py3-none-any.whl", hash = "sha256:530dc2a2af60a414a832059574df4a6e10cce927f6f4a78209390fe38955cfb7", size = 199289, upload-time = "2025-09-02T19:10:47.708Z" },
]
[[package]]
name = "jinja2"
version = "3.1.6"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
dependencies = [
{ name = "markupsafe" },
]
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115, upload-time = "2025-03-05T20:05:02.478Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" },
]
[[package]]
name = "kiwisolver"
version = "1.4.9"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/5c/3c/85844f1b0feb11ee581ac23fe5fce65cd049a200c1446708cc1b7f922875/kiwisolver-1.4.9.tar.gz", hash = "sha256:c3b22c26c6fd6811b0ae8363b95ca8ce4ea3c202d3d0975b2914310ceb1bcc4d", size = 97564, upload-time = "2025-08-10T21:27:49.279Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/31/c1/c2686cda909742ab66c7388e9a1a8521a59eb89f8bcfbee28fc980d07e24/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a5d0432ccf1c7ab14f9949eec60c5d1f924f17c037e9f8b33352fa05799359b8", size = 123681, upload-time = "2025-08-10T21:26:26.725Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ca/f0/f44f50c9f5b1a1860261092e3bc91ecdc9acda848a8b8c6abfda4a24dd5c/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efb3a45b35622bb6c16dbfab491a8f5a391fe0e9d45ef32f4df85658232ca0e2", size = 66464, upload-time = "2025-08-10T21:26:27.733Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/2d/7a/9d90a151f558e29c3936b8a47ac770235f436f2120aca41a6d5f3d62ae8d/kiwisolver-1.4.9-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1a12cf6398e8a0a001a059747a1cbf24705e18fe413bc22de7b3d15c67cffe3f", size = 64961, upload-time = "2025-08-10T21:26:28.729Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e9/e9/f218a2cb3a9ffbe324ca29a9e399fa2d2866d7f348ec3a88df87fc248fc5/kiwisolver-1.4.9-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b67e6efbf68e077dd71d1a6b37e43e1a99d0bff1a3d51867d45ee8908b931098", size = 1474607, upload-time = "2025-08-10T21:26:29.798Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d9/28/aac26d4c882f14de59041636292bc838db8961373825df23b8eeb807e198/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5656aa670507437af0207645273ccdfee4f14bacd7f7c67a4306d0dcaeaf6eed", size = 1276546, upload-time = "2025-08-10T21:26:31.401Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8b/ad/8bfc1c93d4cc565e5069162f610ba2f48ff39b7de4b5b8d93f69f30c4bed/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:bfc08add558155345129c7803b3671cf195e6a56e7a12f3dde7c57d9b417f525", size = 1294482, upload-time = "2025-08-10T21:26:32.721Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/da/f1/6aca55ff798901d8ce403206d00e033191f63d82dd708a186e0ed2067e9c/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:40092754720b174e6ccf9e845d0d8c7d8e12c3d71e7fc35f55f3813e96376f78", size = 1343720, upload-time = "2025-08-10T21:26:34.032Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d1/91/eed031876c595c81d90d0f6fc681ece250e14bf6998c3d7c419466b523b7/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:497d05f29a1300d14e02e6441cf0f5ee81c1ff5a304b0d9fb77423974684e08b", size = 2224907, upload-time = "2025-08-10T21:26:35.824Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e9/ec/4d1925f2e49617b9cca9c34bfa11adefad49d00db038e692a559454dfb2e/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdd1a81a1860476eb41ac4bc1e07b3f07259e6d55bbf739b79c8aaedcf512799", size = 2321334, upload-time = "2025-08-10T21:26:37.534Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/43/cb/450cd4499356f68802750c6ddc18647b8ea01ffa28f50d20598e0befe6e9/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e6b93f13371d341afee3be9f7c5964e3fe61d5fa30f6a30eb49856935dfe4fc3", size = 2488313, upload-time = "2025-08-10T21:26:39.191Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/71/67/fc76242bd99f885651128a5d4fa6083e5524694b7c88b489b1b55fdc491d/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d75aa530ccfaa593da12834b86a0724f58bff12706659baa9227c2ccaa06264c", size = 2291970, upload-time = "2025-08-10T21:26:40.828Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/75/bd/f1a5d894000941739f2ae1b65a32892349423ad49c2e6d0771d0bad3fae4/kiwisolver-1.4.9-cp313-cp313-win_amd64.whl", hash = "sha256:dd0a578400839256df88c16abddf9ba14813ec5f21362e1fe65022e00c883d4d", size = 73894, upload-time = "2025-08-10T21:26:42.33Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/95/38/dce480814d25b99a391abbddadc78f7c117c6da34be68ca8b02d5848b424/kiwisolver-1.4.9-cp313-cp313-win_arm64.whl", hash = "sha256:d4188e73af84ca82468f09cadc5ac4db578109e52acb4518d8154698d3a87ca2", size = 64995, upload-time = "2025-08-10T21:26:43.889Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e2/37/7d218ce5d92dadc5ebdd9070d903e0c7cf7edfe03f179433ac4d13ce659c/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:5a0f2724dfd4e3b3ac5a82436a8e6fd16baa7d507117e4279b660fe8ca38a3a1", size = 126510, upload-time = "2025-08-10T21:26:44.915Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/23/b0/e85a2b48233daef4b648fb657ebbb6f8367696a2d9548a00b4ee0eb67803/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:1b11d6a633e4ed84fc0ddafd4ebfd8ea49b3f25082c04ad12b8315c11d504dc1", size = 67903, upload-time = "2025-08-10T21:26:45.934Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/44/98/f2425bc0113ad7de24da6bb4dae1343476e95e1d738be7c04d31a5d037fd/kiwisolver-1.4.9-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61874cdb0a36016354853593cffc38e56fc9ca5aa97d2c05d3dcf6922cd55a11", size = 66402, upload-time = "2025-08-10T21:26:47.101Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/98/d8/594657886df9f34c4177cc353cc28ca7e6e5eb562d37ccc233bff43bbe2a/kiwisolver-1.4.9-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:60c439763a969a6af93b4881db0eed8fadf93ee98e18cbc35bc8da868d0c4f0c", size = 1582135, upload-time = "2025-08-10T21:26:48.665Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/5c/c6/38a115b7170f8b306fc929e166340c24958347308ea3012c2b44e7e295db/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92a2f997387a1b79a75e7803aa7ded2cfbe2823852ccf1ba3bcf613b62ae3197", size = 1389409, upload-time = "2025-08-10T21:26:50.335Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bf/3b/e04883dace81f24a568bcee6eb3001da4ba05114afa622ec9b6fafdc1f5e/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a31d512c812daea6d8b3be3b2bfcbeb091dbb09177706569bcfc6240dcf8b41c", size = 1401763, upload-time = "2025-08-10T21:26:51.867Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9f/80/20ace48e33408947af49d7d15c341eaee69e4e0304aab4b7660e234d6288/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:52a15b0f35dad39862d376df10c5230155243a2c1a436e39eb55623ccbd68185", size = 1453643, upload-time = "2025-08-10T21:26:53.592Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/64/31/6ce4380a4cd1f515bdda976a1e90e547ccd47b67a1546d63884463c92ca9/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a30fd6fdef1430fd9e1ba7b3398b5ee4e2887783917a687d86ba69985fb08748", size = 2330818, upload-time = "2025-08-10T21:26:55.051Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fa/e9/3f3fcba3bcc7432c795b82646306e822f3fd74df0ee81f0fa067a1f95668/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:cc9617b46837c6468197b5945e196ee9ca43057bb7d9d1ae688101e4e1dddf64", size = 2419963, upload-time = "2025-08-10T21:26:56.421Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/99/43/7320c50e4133575c66e9f7dadead35ab22d7c012a3b09bb35647792b2a6d/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:0ab74e19f6a2b027ea4f845a78827969af45ce790e6cb3e1ebab71bdf9f215ff", size = 2594639, upload-time = "2025-08-10T21:26:57.882Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/65/d6/17ae4a270d4a987ef8a385b906d2bdfc9fce502d6dc0d3aea865b47f548c/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:dba5ee5d3981160c28d5490f0d1b7ed730c22470ff7f6cc26cfcfaacb9896a07", size = 2391741, upload-time = "2025-08-10T21:26:59.237Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/2a/8f/8f6f491d595a9e5912971f3f863d81baddccc8a4d0c3749d6a0dd9ffc9df/kiwisolver-1.4.9-cp313-cp313t-win_arm64.whl", hash = "sha256:0749fd8f4218ad2e851e11cc4dc05c7cbc0cbc4267bdfdb31782e65aace4ee9c", size = 68646, upload-time = "2025-08-10T21:27:00.52Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/6b/32/6cc0fbc9c54d06c2969faa9c1d29f5751a2e51809dd55c69055e62d9b426/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:9928fe1eb816d11ae170885a74d074f57af3a0d65777ca47e9aeb854a1fba386", size = 123806, upload-time = "2025-08-10T21:27:01.537Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b2/dd/2bfb1d4a4823d92e8cbb420fe024b8d2167f72079b3bb941207c42570bdf/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d0005b053977e7b43388ddec89fa567f43d4f6d5c2c0affe57de5ebf290dc552", size = 66605, upload-time = "2025-08-10T21:27:03.335Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f7/69/00aafdb4e4509c2ca6064646cba9cd4b37933898f426756adb2cb92ebbed/kiwisolver-1.4.9-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:2635d352d67458b66fd0667c14cb1d4145e9560d503219034a18a87e971ce4f3", size = 64925, upload-time = "2025-08-10T21:27:04.339Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/43/dc/51acc6791aa14e5cb6d8a2e28cefb0dc2886d8862795449d021334c0df20/kiwisolver-1.4.9-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:767c23ad1c58c9e827b649a9ab7809fd5fd9db266a9cf02b0e926ddc2c680d58", size = 1472414, upload-time = "2025-08-10T21:27:05.437Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3d/bb/93fa64a81db304ac8a246f834d5094fae4b13baf53c839d6bb6e81177129/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:72d0eb9fba308b8311685c2268cf7d0a0639a6cd027d8128659f72bdd8a024b4", size = 1281272, upload-time = "2025-08-10T21:27:07.063Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/70/e6/6df102916960fb8d05069d4bd92d6d9a8202d5a3e2444494e7cd50f65b7a/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f68e4f3eeca8fb22cc3d731f9715a13b652795ef657a13df1ad0c7dc0e9731df", size = 1298578, upload-time = "2025-08-10T21:27:08.452Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/7c/47/e142aaa612f5343736b087864dbaebc53ea8831453fb47e7521fa8658f30/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d84cd4061ae292d8ac367b2c3fa3aad11cb8625a95d135fe93f286f914f3f5a6", size = 1345607, upload-time = "2025-08-10T21:27:10.125Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/54/89/d641a746194a0f4d1a3670fb900d0dbaa786fb98341056814bc3f058fa52/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:a60ea74330b91bd22a29638940d115df9dc00af5035a9a2a6ad9399ffb4ceca5", size = 2230150, upload-time = "2025-08-10T21:27:11.484Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/aa/6b/5ee1207198febdf16ac11f78c5ae40861b809cbe0e6d2a8d5b0b3044b199/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:ce6a3a4e106cf35c2d9c4fa17c05ce0b180db622736845d4315519397a77beaf", size = 2325979, upload-time = "2025-08-10T21:27:12.917Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fc/ff/b269eefd90f4ae14dcc74973d5a0f6d28d3b9bb1afd8c0340513afe6b39a/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:77937e5e2a38a7b48eef0585114fe7930346993a88060d0bf886086d2aa49ef5", size = 2491456, upload-time = "2025-08-10T21:27:14.353Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fc/d4/10303190bd4d30de547534601e259a4fbf014eed94aae3e5521129215086/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:24c175051354f4a28c5d6a31c93906dc653e2bf234e8a4bbfb964892078898ce", size = 2294621, upload-time = "2025-08-10T21:27:15.808Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/28/e0/a9a90416fce5c0be25742729c2ea52105d62eda6c4be4d803c2a7be1fa50/kiwisolver-1.4.9-cp314-cp314-win_amd64.whl", hash = "sha256:0763515d4df10edf6d06a3c19734e2566368980d21ebec439f33f9eb936c07b7", size = 75417, upload-time = "2025-08-10T21:27:17.436Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/1f/10/6949958215b7a9a264299a7db195564e87900f709db9245e4ebdd3c70779/kiwisolver-1.4.9-cp314-cp314-win_arm64.whl", hash = "sha256:0e4e2bf29574a6a7b7f6cb5fa69293b9f96c928949ac4a53ba3f525dffb87f9c", size = 66582, upload-time = "2025-08-10T21:27:18.436Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ec/79/60e53067903d3bc5469b369fe0dfc6b3482e2133e85dae9daa9527535991/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:d976bbb382b202f71c67f77b0ac11244021cfa3f7dfd9e562eefcea2df711548", size = 126514, upload-time = "2025-08-10T21:27:19.465Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/25/d1/4843d3e8d46b072c12a38c97c57fab4608d36e13fe47d47ee96b4d61ba6f/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:2489e4e5d7ef9a1c300a5e0196e43d9c739f066ef23270607d45aba368b91f2d", size = 67905, upload-time = "2025-08-10T21:27:20.51Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8c/ae/29ffcbd239aea8b93108de1278271ae764dfc0d803a5693914975f200596/kiwisolver-1.4.9-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:e2ea9f7ab7fbf18fffb1b5434ce7c69a07582f7acc7717720f1d69f3e806f90c", size = 66399, upload-time = "2025-08-10T21:27:21.496Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a1/ae/d7ba902aa604152c2ceba5d352d7b62106bedbccc8e95c3934d94472bfa3/kiwisolver-1.4.9-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b34e51affded8faee0dfdb705416153819d8ea9250bbbf7ea1b249bdeb5f1122", size = 1582197, upload-time = "2025-08-10T21:27:22.604Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f2/41/27c70d427eddb8bc7e4f16420a20fefc6f480312122a59a959fdfe0445ad/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d8aacd3d4b33b772542b2e01beb50187536967b514b00003bdda7589722d2a64", size = 1390125, upload-time = "2025-08-10T21:27:24.036Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/41/42/b3799a12bafc76d962ad69083f8b43b12bf4fe78b097b12e105d75c9b8f1/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:7cf974dd4e35fa315563ac99d6287a1024e4dc2077b8a7d7cd3d2fb65d283134", size = 1402612, upload-time = "2025-08-10T21:27:25.773Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d2/b5/a210ea073ea1cfaca1bb5c55a62307d8252f531beb364e18aa1e0888b5a0/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:85bd218b5ecfbee8c8a82e121802dcb519a86044c9c3b2e4aef02fa05c6da370", size = 1453990, upload-time = "2025-08-10T21:27:27.089Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/5f/ce/a829eb8c033e977d7ea03ed32fb3c1781b4fa0433fbadfff29e39c676f32/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:0856e241c2d3df4efef7c04a1e46b1936b6120c9bcf36dd216e3acd84bc4fb21", size = 2331601, upload-time = "2025-08-10T21:27:29.343Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e0/4b/b5e97eb142eb9cd0072dacfcdcd31b1c66dc7352b0f7c7255d339c0edf00/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:9af39d6551f97d31a4deebeac6f45b156f9755ddc59c07b402c148f5dbb6482a", size = 2422041, upload-time = "2025-08-10T21:27:30.754Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/40/be/8eb4cd53e1b85ba4edc3a9321666f12b83113a178845593307a3e7891f44/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:bb4ae2b57fc1d8cbd1cf7b1d9913803681ffa903e7488012be5b76dedf49297f", size = 2594897, upload-time = "2025-08-10T21:27:32.803Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/99/dd/841e9a66c4715477ea0abc78da039832fbb09dac5c35c58dc4c41a407b8a/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:aedff62918805fb62d43a4aa2ecd4482c380dc76cd31bd7c8878588a61bd0369", size = 2391835, upload-time = "2025-08-10T21:27:34.23Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0c/28/4b2e5c47a0da96896fdfdb006340ade064afa1e63675d01ea5ac222b6d52/kiwisolver-1.4.9-cp314-cp314t-win_amd64.whl", hash = "sha256:1fa333e8b2ce4d9660f2cda9c0e1b6bafcfb2457a9d259faa82289e73ec24891", size = 79988, upload-time = "2025-08-10T21:27:35.587Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/80/be/3578e8afd18c88cdf9cb4cffde75a96d2be38c5a903f1ed0ceec061bd09e/kiwisolver-1.4.9-cp314-cp314t-win_arm64.whl", hash = "sha256:4a48a2ce79d65d363597ef7b567ce3d14d68783d2b2263d98db3d9477805ba32", size = 70260, upload-time = "2025-08-10T21:27:36.606Z" },
]
[[package]]
name = "markupsafe"
version = "3.0.3"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/7e/99/7690b6d4034fffd95959cbe0c02de8deb3098cc577c67bb6a24fe5d7caa7/markupsafe-3.0.3.tar.gz", hash = "sha256:722695808f4b6457b320fdc131280796bdceb04ab50fe1795cd540799ebe1698", size = 80313, upload-time = "2025-09-27T18:37:40.426Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/38/2f/907b9c7bbba283e68f20259574b13d005c121a0fa4c175f9bed27c4597ff/markupsafe-3.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e1cf1972137e83c5d4c136c43ced9ac51d0e124706ee1c8aa8532c1287fa8795", size = 11622, upload-time = "2025-09-27T18:36:41.777Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9c/d9/5f7756922cdd676869eca1c4e3c0cd0df60ed30199ffd775e319089cb3ed/markupsafe-3.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:116bb52f642a37c115f517494ea5feb03889e04df47eeff5b130b1808ce7c219", size = 12029, upload-time = "2025-09-27T18:36:43.257Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/00/07/575a68c754943058c78f30db02ee03a64b3c638586fba6a6dd56830b30a3/markupsafe-3.0.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:133a43e73a802c5562be9bbcd03d090aa5a1fe899db609c29e8c8d815c5f6de6", size = 24374, upload-time = "2025-09-27T18:36:44.508Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a9/21/9b05698b46f218fc0e118e1f8168395c65c8a2c750ae2bab54fc4bd4e0e8/markupsafe-3.0.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ccfcd093f13f0f0b7fdd0f198b90053bf7b2f02a3927a30e63f3ccc9df56b676", size = 22980, upload-time = "2025-09-27T18:36:45.385Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/7f/71/544260864f893f18b6827315b988c146b559391e6e7e8f7252839b1b846a/markupsafe-3.0.3-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:509fa21c6deb7a7a273d629cf5ec029bc209d1a51178615ddf718f5918992ab9", size = 21990, upload-time = "2025-09-27T18:36:46.916Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/c2/28/b50fc2f74d1ad761af2f5dcce7492648b983d00a65b8c0e0cb457c82ebbe/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a4afe79fb3de0b7097d81da19090f4df4f8d3a2b3adaa8764138aac2e44f3af1", size = 23784, upload-time = "2025-09-27T18:36:47.884Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ed/76/104b2aa106a208da8b17a2fb72e033a5a9d7073c68f7e508b94916ed47a9/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:795e7751525cae078558e679d646ae45574b47ed6e7771863fcc079a6171a0fc", size = 21588, upload-time = "2025-09-27T18:36:48.82Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b5/99/16a5eb2d140087ebd97180d95249b00a03aa87e29cc224056274f2e45fd6/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8485f406a96febb5140bfeca44a73e3ce5116b2501ac54fe953e488fb1d03b12", size = 23041, upload-time = "2025-09-27T18:36:49.797Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/19/bc/e7140ed90c5d61d77cea142eed9f9c303f4c4806f60a1044c13e3f1471d0/markupsafe-3.0.3-cp313-cp313-win32.whl", hash = "sha256:bdd37121970bfd8be76c5fb069c7751683bdf373db1ed6c010162b2a130248ed", size = 14543, upload-time = "2025-09-27T18:36:51.584Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/05/73/c4abe620b841b6b791f2edc248f556900667a5a1cf023a6646967ae98335/markupsafe-3.0.3-cp313-cp313-win_amd64.whl", hash = "sha256:9a1abfdc021a164803f4d485104931fb8f8c1efd55bc6b748d2f5774e78b62c5", size = 15113, upload-time = "2025-09-27T18:36:52.537Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f0/3a/fa34a0f7cfef23cf9500d68cb7c32dd64ffd58a12b09225fb03dd37d5b80/markupsafe-3.0.3-cp313-cp313-win_arm64.whl", hash = "sha256:7e68f88e5b8799aa49c85cd116c932a1ac15caaa3f5db09087854d218359e485", size = 13911, upload-time = "2025-09-27T18:36:53.513Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e4/d7/e05cd7efe43a88a17a37b3ae96e79a19e846f3f456fe79c57ca61356ef01/markupsafe-3.0.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:218551f6df4868a8d527e3062d0fb968682fe92054e89978594c28e642c43a73", size = 11658, upload-time = "2025-09-27T18:36:54.819Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/99/9e/e412117548182ce2148bdeacdda3bb494260c0b0184360fe0d56389b523b/markupsafe-3.0.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3524b778fe5cfb3452a09d31e7b5adefeea8c5be1d43c4f810ba09f2ceb29d37", size = 12066, upload-time = "2025-09-27T18:36:55.714Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bc/e6/fa0ffcda717ef64a5108eaa7b4f5ed28d56122c9a6d70ab8b72f9f715c80/markupsafe-3.0.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4e885a3d1efa2eadc93c894a21770e4bc67899e3543680313b09f139e149ab19", size = 25639, upload-time = "2025-09-27T18:36:56.908Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/96/ec/2102e881fe9d25fc16cb4b25d5f5cde50970967ffa5dddafdb771237062d/markupsafe-3.0.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8709b08f4a89aa7586de0aadc8da56180242ee0ada3999749b183aa23df95025", size = 23569, upload-time = "2025-09-27T18:36:57.913Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/4b/30/6f2fce1f1f205fc9323255b216ca8a235b15860c34b6798f810f05828e32/markupsafe-3.0.3-cp313-cp313t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:b8512a91625c9b3da6f127803b166b629725e68af71f8184ae7e7d54686a56d6", size = 23284, upload-time = "2025-09-27T18:36:58.833Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/58/47/4a0ccea4ab9f5dcb6f79c0236d954acb382202721e704223a8aafa38b5c8/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:9b79b7a16f7fedff2495d684f2b59b0457c3b493778c9eed31111be64d58279f", size = 24801, upload-time = "2025-09-27T18:36:59.739Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/6a/70/3780e9b72180b6fecb83a4814d84c3bf4b4ae4bf0b19c27196104149734c/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_riscv64.whl", hash = "sha256:12c63dfb4a98206f045aa9563db46507995f7ef6d83b2f68eda65c307c6829eb", size = 22769, upload-time = "2025-09-27T18:37:00.719Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/98/c5/c03c7f4125180fc215220c035beac6b9cb684bc7a067c84fc69414d315f5/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8f71bc33915be5186016f675cd83a1e08523649b0e33efdb898db577ef5bb009", size = 23642, upload-time = "2025-09-27T18:37:01.673Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/80/d6/2d1b89f6ca4bff1036499b1e29a1d02d282259f3681540e16563f27ebc23/markupsafe-3.0.3-cp313-cp313t-win32.whl", hash = "sha256:69c0b73548bc525c8cb9a251cddf1931d1db4d2258e9599c28c07ef3580ef354", size = 14612, upload-time = "2025-09-27T18:37:02.639Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/2b/98/e48a4bfba0a0ffcf9925fe2d69240bfaa19c6f7507b8cd09c70684a53c1e/markupsafe-3.0.3-cp313-cp313t-win_amd64.whl", hash = "sha256:1b4b79e8ebf6b55351f0d91fe80f893b4743f104bff22e90697db1590e47a218", size = 15200, upload-time = "2025-09-27T18:37:03.582Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0e/72/e3cc540f351f316e9ed0f092757459afbc595824ca724cbc5a5d4263713f/markupsafe-3.0.3-cp313-cp313t-win_arm64.whl", hash = "sha256:ad2cf8aa28b8c020ab2fc8287b0f823d0a7d8630784c31e9ee5edea20f406287", size = 13973, upload-time = "2025-09-27T18:37:04.929Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/33/8a/8e42d4838cd89b7dde187011e97fe6c3af66d8c044997d2183fbd6d31352/markupsafe-3.0.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:eaa9599de571d72e2daf60164784109f19978b327a3910d3e9de8c97b5b70cfe", size = 11619, upload-time = "2025-09-27T18:37:06.342Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b5/64/7660f8a4a8e53c924d0fa05dc3a55c9cee10bbd82b11c5afb27d44b096ce/markupsafe-3.0.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c47a551199eb8eb2121d4f0f15ae0f923d31350ab9280078d1e5f12b249e0026", size = 12029, upload-time = "2025-09-27T18:37:07.213Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/da/ef/e648bfd021127bef5fa12e1720ffed0c6cbb8310c8d9bea7266337ff06de/markupsafe-3.0.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f34c41761022dd093b4b6896d4810782ffbabe30f2d443ff5f083e0cbbb8c737", size = 24408, upload-time = "2025-09-27T18:37:09.572Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/41/3c/a36c2450754618e62008bf7435ccb0f88053e07592e6028a34776213d877/markupsafe-3.0.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:457a69a9577064c05a97c41f4e65148652db078a3a509039e64d3467b9e7ef97", size = 23005, upload-time = "2025-09-27T18:37:10.58Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bc/20/b7fdf89a8456b099837cd1dc21974632a02a999ec9bf7ca3e490aacd98e7/markupsafe-3.0.3-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:e8afc3f2ccfa24215f8cb28dcf43f0113ac3c37c2f0f0806d8c70e4228c5cf4d", size = 22048, upload-time = "2025-09-27T18:37:11.547Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9a/a7/591f592afdc734f47db08a75793a55d7fbcc6902a723ae4cfbab61010cc5/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:ec15a59cf5af7be74194f7ab02d0f59a62bdcf1a537677ce67a2537c9b87fcda", size = 23821, upload-time = "2025-09-27T18:37:12.48Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/7d/33/45b24e4f44195b26521bc6f1a82197118f74df348556594bd2262bda1038/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:0eb9ff8191e8498cca014656ae6b8d61f39da5f95b488805da4bb029cccbfbaf", size = 21606, upload-time = "2025-09-27T18:37:13.485Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ff/0e/53dfaca23a69fbfbbf17a4b64072090e70717344c52eaaaa9c5ddff1e5f0/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2713baf880df847f2bece4230d4d094280f4e67b1e813eec43b4c0e144a34ffe", size = 23043, upload-time = "2025-09-27T18:37:14.408Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/46/11/f333a06fc16236d5238bfe74daccbca41459dcd8d1fa952e8fbd5dccfb70/markupsafe-3.0.3-cp314-cp314-win32.whl", hash = "sha256:729586769a26dbceff69f7a7dbbf59ab6572b99d94576a5592625d5b411576b9", size = 14747, upload-time = "2025-09-27T18:37:15.36Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/28/52/182836104b33b444e400b14f797212f720cbc9ed6ba34c800639d154e821/markupsafe-3.0.3-cp314-cp314-win_amd64.whl", hash = "sha256:bdc919ead48f234740ad807933cdf545180bfbe9342c2bb451556db2ed958581", size = 15341, upload-time = "2025-09-27T18:37:16.496Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/6f/18/acf23e91bd94fd7b3031558b1f013adfa21a8e407a3fdb32745538730382/markupsafe-3.0.3-cp314-cp314-win_arm64.whl", hash = "sha256:5a7d5dc5140555cf21a6fefbdbf8723f06fcd2f63ef108f2854de715e4422cb4", size = 14073, upload-time = "2025-09-27T18:37:17.476Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3c/f0/57689aa4076e1b43b15fdfa646b04653969d50cf30c32a102762be2485da/markupsafe-3.0.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1353ef0c1b138e1907ae78e2f6c63ff67501122006b0f9abad68fda5f4ffc6ab", size = 11661, upload-time = "2025-09-27T18:37:18.453Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/89/c3/2e67a7ca217c6912985ec766c6393b636fb0c2344443ff9d91404dc4c79f/markupsafe-3.0.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:1085e7fbddd3be5f89cc898938f42c0b3c711fdcb37d75221de2666af647c175", size = 12069, upload-time = "2025-09-27T18:37:19.332Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f0/00/be561dce4e6ca66b15276e184ce4b8aec61fe83662cce2f7d72bd3249d28/markupsafe-3.0.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1b52b4fb9df4eb9ae465f8d0c228a00624de2334f216f178a995ccdcf82c4634", size = 25670, upload-time = "2025-09-27T18:37:20.245Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/50/09/c419f6f5a92e5fadde27efd190eca90f05e1261b10dbd8cbcb39cd8ea1dc/markupsafe-3.0.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fed51ac40f757d41b7c48425901843666a6677e3e8eb0abcff09e4ba6e664f50", size = 23598, upload-time = "2025-09-27T18:37:21.177Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/22/44/a0681611106e0b2921b3033fc19bc53323e0b50bc70cffdd19f7d679bb66/markupsafe-3.0.3-cp314-cp314t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:f190daf01f13c72eac4efd5c430a8de82489d9cff23c364c3ea822545032993e", size = 23261, upload-time = "2025-09-27T18:37:22.167Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/5f/57/1b0b3f100259dc9fffe780cfb60d4be71375510e435efec3d116b6436d43/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:e56b7d45a839a697b5eb268c82a71bd8c7f6c94d6fd50c3d577fa39a9f1409f5", size = 24835, upload-time = "2025-09-27T18:37:23.296Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/26/6a/4bf6d0c97c4920f1597cc14dd720705eca0bf7c787aebc6bb4d1bead5388/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_riscv64.whl", hash = "sha256:f3e98bb3798ead92273dc0e5fd0f31ade220f59a266ffd8a4f6065e0a3ce0523", size = 22733, upload-time = "2025-09-27T18:37:24.237Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/14/c7/ca723101509b518797fedc2fdf79ba57f886b4aca8a7d31857ba3ee8281f/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:5678211cb9333a6468fb8d8be0305520aa073f50d17f089b5b4b477ea6e67fdc", size = 23672, upload-time = "2025-09-27T18:37:25.271Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fb/df/5bd7a48c256faecd1d36edc13133e51397e41b73bb77e1a69deab746ebac/markupsafe-3.0.3-cp314-cp314t-win32.whl", hash = "sha256:915c04ba3851909ce68ccc2b8e2cd691618c4dc4c4232fb7982bca3f41fd8c3d", size = 14819, upload-time = "2025-09-27T18:37:26.285Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/1a/8a/0402ba61a2f16038b48b39bccca271134be00c5c9f0f623208399333c448/markupsafe-3.0.3-cp314-cp314t-win_amd64.whl", hash = "sha256:4faffd047e07c38848ce017e8725090413cd80cbc23d86e55c587bf979e579c9", size = 15426, upload-time = "2025-09-27T18:37:27.316Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/70/bc/6f1c2f612465f5fa89b95bead1f44dcb607670fd42891d8fdcd5d039f4f4/markupsafe-3.0.3-cp314-cp314t-win_arm64.whl", hash = "sha256:32001d6a8fc98c8cb5c947787c5d08b0a50663d139f1305bac5885d98d9b40fa", size = 14146, upload-time = "2025-09-27T18:37:28.327Z" },
]
[[package]]
name = "matplotlib"
version = "3.10.7"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
dependencies = [
{ name = "contourpy" },
{ name = "cycler" },
{ name = "fonttools" },
{ name = "kiwisolver" },
{ name = "numpy" },
{ name = "packaging" },
{ name = "pillow" },
{ name = "pyparsing" },
{ name = "python-dateutil" },
]
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ae/e2/d2d5295be2f44c678ebaf3544ba32d20c1f9ef08c49fe47f496180e1db15/matplotlib-3.10.7.tar.gz", hash = "sha256:a06ba7e2a2ef9131c79c49e63dad355d2d878413a0376c1727c8b9335ff731c7", size = 34804865, upload-time = "2025-10-09T00:28:00.669Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/02/9c/207547916a02c78f6bdd83448d9b21afbc42f6379ed887ecf610984f3b4e/matplotlib-3.10.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1d9d3713a237970569156cfb4de7533b7c4eacdd61789726f444f96a0d28f57f", size = 8273212, upload-time = "2025-10-09T00:26:56.752Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bc/d0/b3d3338d467d3fc937f0bb7f256711395cae6f78e22cef0656159950adf0/matplotlib-3.10.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:37a1fea41153dd6ee061d21ab69c9cf2cf543160b1b85d89cd3d2e2a7902ca4c", size = 8128713, upload-time = "2025-10-09T00:26:59.001Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/22/ff/6425bf5c20d79aa5b959d1ce9e65f599632345391381c9a104133fe0b171/matplotlib-3.10.7-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b3c4ea4948d93c9c29dc01c0c23eef66f2101bf75158c291b88de6525c55c3d1", size = 8698527, upload-time = "2025-10-09T00:27:00.69Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d0/7f/ccdca06f4c2e6c7989270ed7829b8679466682f4cfc0f8c9986241c023b6/matplotlib-3.10.7-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22df30ffaa89f6643206cf13877191c63a50e8f800b038bc39bee9d2d4957632", size = 9529690, upload-time = "2025-10-09T00:27:02.664Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b8/95/b80fc2c1f269f21ff3d193ca697358e24408c33ce2b106a7438a45407b63/matplotlib-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b69676845a0a66f9da30e87f48be36734d6748024b525ec4710be40194282c84", size = 9593732, upload-time = "2025-10-09T00:27:04.653Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e1/b6/23064a96308b9aeceeffa65e96bcde459a2ea4934d311dee20afde7407a0/matplotlib-3.10.7-cp313-cp313-win_amd64.whl", hash = "sha256:744991e0cc863dd669c8dc9136ca4e6e0082be2070b9d793cbd64bec872a6815", size = 8122727, upload-time = "2025-10-09T00:27:06.814Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b3/a6/2faaf48133b82cf3607759027f82b5c702aa99cdfcefb7f93d6ccf26a424/matplotlib-3.10.7-cp313-cp313-win_arm64.whl", hash = "sha256:fba2974df0bf8ce3c995fa84b79cde38326e0f7b5409e7a3a481c1141340bcf7", size = 7992958, upload-time = "2025-10-09T00:27:08.567Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/4a/f0/b018fed0b599bd48d84c08794cb242227fe3341952da102ee9d9682db574/matplotlib-3.10.7-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:932c55d1fa7af4423422cb6a492a31cbcbdbe68fd1a9a3f545aa5e7a143b5355", size = 8316849, upload-time = "2025-10-09T00:27:10.254Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b0/b7/bb4f23856197659f275e11a2a164e36e65e9b48ea3e93c4ec25b4f163198/matplotlib-3.10.7-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5e38c2d581d62ee729a6e144c47a71b3f42fb4187508dbbf4fe71d5612c3433b", size = 8178225, upload-time = "2025-10-09T00:27:12.241Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/62/56/0600609893ff277e6f3ab3c0cef4eafa6e61006c058e84286c467223d4d5/matplotlib-3.10.7-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:786656bb13c237bbcebcd402f65f44dd61ead60ee3deb045af429d889c8dbc67", size = 8711708, upload-time = "2025-10-09T00:27:13.879Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d8/1a/6bfecb0cafe94d6658f2f1af22c43b76cf7a1c2f0dc34ef84cbb6809617e/matplotlib-3.10.7-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:09d7945a70ea43bf9248f4b6582734c2fe726723204a76eca233f24cffc7ef67", size = 9541409, upload-time = "2025-10-09T00:27:15.684Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/08/50/95122a407d7f2e446fd865e2388a232a23f2b81934960ea802f3171518e4/matplotlib-3.10.7-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:d0b181e9fa8daf1d9f2d4c547527b167cb8838fc587deabca7b5c01f97199e84", size = 9594054, upload-time = "2025-10-09T00:27:17.547Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/13/76/75b194a43b81583478a81e78a07da8d9ca6ddf50dd0a2ccabf258059481d/matplotlib-3.10.7-cp313-cp313t-win_amd64.whl", hash = "sha256:31963603041634ce1a96053047b40961f7a29eb8f9a62e80cc2c0427aa1d22a2", size = 8200100, upload-time = "2025-10-09T00:27:20.039Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f5/9e/6aefebdc9f8235c12bdeeda44cc0383d89c1e41da2c400caf3ee2073a3ce/matplotlib-3.10.7-cp313-cp313t-win_arm64.whl", hash = "sha256:aebed7b50aa6ac698c90f60f854b47e48cd2252b30510e7a1feddaf5a3f72cbf", size = 8042131, upload-time = "2025-10-09T00:27:21.608Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0d/4b/e5bc2c321b6a7e3a75638d937d19ea267c34bd5a90e12bee76c4d7c7a0d9/matplotlib-3.10.7-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d883460c43e8c6b173fef244a2341f7f7c0e9725c7fe68306e8e44ed9c8fb100", size = 8273787, upload-time = "2025-10-09T00:27:23.27Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/86/ad/6efae459c56c2fbc404da154e13e3a6039129f3c942b0152624f1c621f05/matplotlib-3.10.7-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:07124afcf7a6504eafcb8ce94091c5898bbdd351519a1beb5c45f7a38c67e77f", size = 8131348, upload-time = "2025-10-09T00:27:24.926Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a6/5a/a4284d2958dee4116359cc05d7e19c057e64ece1b4ac986ab0f2f4d52d5a/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c17398b709a6cce3d9fdb1595c33e356d91c098cd9486cb2cc21ea2ea418e715", size = 9533949, upload-time = "2025-10-09T00:27:26.704Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/de/ff/f3781b5057fa3786623ad8976fc9f7b0d02b2f28534751fd5a44240de4cf/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7146d64f561498764561e9cd0ed64fcf582e570fc519e6f521e2d0cfd43365e1", size = 9804247, upload-time = "2025-10-09T00:27:28.514Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/47/5a/993a59facb8444efb0e197bf55f545ee449902dcee86a4dfc580c3b61314/matplotlib-3.10.7-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:90ad854c0a435da3104c01e2c6f0028d7e719b690998a2333d7218db80950722", size = 9595497, upload-time = "2025-10-09T00:27:30.418Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0d/a5/77c95aaa9bb32c345cbb49626ad8eb15550cba2e6d4c88081a6c2ac7b08d/matplotlib-3.10.7-cp314-cp314-win_amd64.whl", hash = "sha256:4645fc5d9d20ffa3a39361fcdbcec731382763b623b72627806bf251b6388866", size = 8252732, upload-time = "2025-10-09T00:27:32.332Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/74/04/45d269b4268d222390d7817dae77b159651909669a34ee9fdee336db5883/matplotlib-3.10.7-cp314-cp314-win_arm64.whl", hash = "sha256:9257be2f2a03415f9105c486d304a321168e61ad450f6153d77c69504ad764bb", size = 8124240, upload-time = "2025-10-09T00:27:33.94Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/4b/c7/ca01c607bb827158b439208c153d6f14ddb9fb640768f06f7ca3488ae67b/matplotlib-3.10.7-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1e4bbad66c177a8fdfa53972e5ef8be72a5f27e6a607cec0d8579abd0f3102b1", size = 8316938, upload-time = "2025-10-09T00:27:35.534Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/84/d2/5539e66e9f56d2fdec94bb8436f5e449683b4e199bcc897c44fbe3c99e28/matplotlib-3.10.7-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:d8eb7194b084b12feb19142262165832fc6ee879b945491d1c3d4660748020c4", size = 8178245, upload-time = "2025-10-09T00:27:37.334Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/77/b5/e6ca22901fd3e4fe433a82e583436dd872f6c966fca7e63cf806b40356f8/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b4d41379b05528091f00e1728004f9a8d7191260f3862178b88e8fd770206318", size = 9541411, upload-time = "2025-10-09T00:27:39.387Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9e/99/a4524db57cad8fee54b7237239a8f8360bfcfa3170d37c9e71c090c0f409/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4a74f79fafb2e177f240579bc83f0b60f82cc47d2f1d260f422a0627207008ca", size = 9803664, upload-time = "2025-10-09T00:27:41.492Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e6/a5/85e2edf76ea0ad4288d174926d9454ea85f3ce5390cc4e6fab196cbf250b/matplotlib-3.10.7-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:702590829c30aada1e8cef0568ddbffa77ca747b4d6e36c6d173f66e301f89cc", size = 9594066, upload-time = "2025-10-09T00:27:43.694Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/39/69/9684368a314f6d83fe5c5ad2a4121a3a8e03723d2e5c8ea17b66c1bad0e7/matplotlib-3.10.7-cp314-cp314t-win_amd64.whl", hash = "sha256:f79d5de970fc90cd5591f60053aecfce1fcd736e0303d9f0bf86be649fa68fb8", size = 8342832, upload-time = "2025-10-09T00:27:45.543Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/04/5f/e22e08da14bc1a0894184640d47819d2338b792732e20d292bf86e5ab785/matplotlib-3.10.7-cp314-cp314t-win_arm64.whl", hash = "sha256:cb783436e47fcf82064baca52ce748af71725d0352e1d31564cbe9c95df92b9c", size = 8172585, upload-time = "2025-10-09T00:27:47.185Z" },
]
[[package]]
name = "mpmath"
version = "1.3.0"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e0/47/dd32fa426cc72114383ac549964eecb20ecfd886d1e5ccf5340b55b02f57/mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f", size = 508106, upload-time = "2023-03-07T16:47:11.061Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c", size = 536198, upload-time = "2023-03-07T16:47:09.197Z" },
]
[[package]]
name = "networkx"
version = "3.5"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/6c/4f/ccdb8ad3a38e583f214547fd2f7ff1fc160c43a75af88e6aec213404b96a/networkx-3.5.tar.gz", hash = "sha256:d4c6f9cf81f52d69230866796b82afbccdec3db7ae4fbd1b65ea750feed50037", size = 2471065, upload-time = "2025-05-29T11:35:07.804Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/eb/8d/776adee7bbf76365fdd7f2552710282c79a4ead5d2a46408c9043a2b70ba/networkx-3.5-py3-none-any.whl", hash = "sha256:0030d386a9a06dee3565298b4a734b68589749a544acbb6c412dc9e2489ec6ec", size = 2034406, upload-time = "2025-05-29T11:35:04.961Z" },
]
[[package]]
name = "numpy"
version = "2.3.3"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d0/19/95b3d357407220ed24c139018d2518fab0a61a948e68286a25f1a4d049ff/numpy-2.3.3.tar.gz", hash = "sha256:ddc7c39727ba62b80dfdbedf400d1c10ddfa8eefbd7ec8dcb118be8b56d31029", size = 20576648, upload-time = "2025-09-09T16:54:12.543Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/7d/b9/984c2b1ee61a8b803bf63582b4ac4242cf76e2dbd663efeafcb620cc0ccb/numpy-2.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f5415fb78995644253370985342cd03572ef8620b934da27d77377a2285955bf", size = 20949588, upload-time = "2025-09-09T15:56:59.087Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a6/e4/07970e3bed0b1384d22af1e9912527ecbeb47d3b26e9b6a3bced068b3bea/numpy-2.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d00de139a3324e26ed5b95870ce63be7ec7352171bc69a4cf1f157a48e3eb6b7", size = 14177802, upload-time = "2025-09-09T15:57:01.73Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/35/c7/477a83887f9de61f1203bad89cf208b7c19cc9fef0cebef65d5a1a0619f2/numpy-2.3.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:9dc13c6a5829610cc07422bc74d3ac083bd8323f14e2827d992f9e52e22cd6a6", size = 5106537, upload-time = "2025-09-09T15:57:03.765Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/52/47/93b953bd5866a6f6986344d045a207d3f1cfbad99db29f534ea9cee5108c/numpy-2.3.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:d79715d95f1894771eb4e60fb23f065663b2298f7d22945d66877aadf33d00c7", size = 6640743, upload-time = "2025-09-09T15:57:07.921Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/23/83/377f84aaeb800b64c0ef4de58b08769e782edcefa4fea712910b6f0afd3c/numpy-2.3.3-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:952cfd0748514ea7c3afc729a0fc639e61655ce4c55ab9acfab14bda4f402b4c", size = 14278881, upload-time = "2025-09-09T15:57:11.349Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9a/a5/bf3db6e66c4b160d6ea10b534c381a1955dfab34cb1017ea93aa33c70ed3/numpy-2.3.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5b83648633d46f77039c29078751f80da65aa64d5622a3cd62aaef9d835b6c93", size = 16636301, upload-time = "2025-09-09T15:57:14.245Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a2/59/1287924242eb4fa3f9b3a2c30400f2e17eb2707020d1c5e3086fe7330717/numpy-2.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b001bae8cea1c7dfdb2ae2b017ed0a6f2102d7a70059df1e338e307a4c78a8ae", size = 16053645, upload-time = "2025-09-09T15:57:16.534Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e6/93/b3d47ed882027c35e94ac2320c37e452a549f582a5e801f2d34b56973c97/numpy-2.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8e9aced64054739037d42fb84c54dd38b81ee238816c948c8f3ed134665dcd86", size = 18578179, upload-time = "2025-09-09T15:57:18.883Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/20/d9/487a2bccbf7cc9d4bfc5f0f197761a5ef27ba870f1e3bbb9afc4bbe3fcc2/numpy-2.3.3-cp313-cp313-win32.whl", hash = "sha256:9591e1221db3f37751e6442850429b3aabf7026d3b05542d102944ca7f00c8a8", size = 6312250, upload-time = "2025-09-09T15:57:21.296Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/1b/b5/263ebbbbcede85028f30047eab3d58028d7ebe389d6493fc95ae66c636ab/numpy-2.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:f0dadeb302887f07431910f67a14d57209ed91130be0adea2f9793f1a4f817cf", size = 12783269, upload-time = "2025-09-09T15:57:23.034Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fa/75/67b8ca554bbeaaeb3fac2e8bce46967a5a06544c9108ec0cf5cece559b6c/numpy-2.3.3-cp313-cp313-win_arm64.whl", hash = "sha256:3c7cf302ac6e0b76a64c4aecf1a09e51abd9b01fc7feee80f6c43e3ab1b1dbc5", size = 10195314, upload-time = "2025-09-09T15:57:25.045Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/11/d0/0d1ddec56b162042ddfafeeb293bac672de9b0cfd688383590090963720a/numpy-2.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:eda59e44957d272846bb407aad19f89dc6f58fecf3504bd144f4c5cf81a7eacc", size = 21048025, upload-time = "2025-09-09T15:57:27.257Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/36/9e/1996ca6b6d00415b6acbdd3c42f7f03ea256e2c3f158f80bd7436a8a19f3/numpy-2.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:823d04112bc85ef5c4fda73ba24e6096c8f869931405a80aa8b0e604510a26bc", size = 14301053, upload-time = "2025-09-09T15:57:30.077Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/05/24/43da09aa764c68694b76e84b3d3f0c44cb7c18cdc1ba80e48b0ac1d2cd39/numpy-2.3.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:40051003e03db4041aa325da2a0971ba41cf65714e65d296397cc0e32de6018b", size = 5229444, upload-time = "2025-09-09T15:57:32.733Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bc/14/50ffb0f22f7218ef8af28dd089f79f68289a7a05a208db9a2c5dcbe123c1/numpy-2.3.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:6ee9086235dd6ab7ae75aba5662f582a81ced49f0f1c6de4260a78d8f2d91a19", size = 6738039, upload-time = "2025-09-09T15:57:34.328Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/55/52/af46ac0795e09657d45a7f4db961917314377edecf66db0e39fa7ab5c3d3/numpy-2.3.3-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:94fcaa68757c3e2e668ddadeaa86ab05499a70725811e582b6a9858dd472fb30", size = 14352314, upload-time = "2025-09-09T15:57:36.255Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a7/b1/dc226b4c90eb9f07a3fff95c2f0db3268e2e54e5cce97c4ac91518aee71b/numpy-2.3.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:da1a74b90e7483d6ce5244053399a614b1d6b7bc30a60d2f570e5071f8959d3e", size = 16701722, upload-time = "2025-09-09T15:57:38.622Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9d/9d/9d8d358f2eb5eced14dba99f110d83b5cd9a4460895230f3b396ad19a323/numpy-2.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:2990adf06d1ecee3b3dcbb4977dfab6e9f09807598d647f04d385d29e7a3c3d3", size = 16132755, upload-time = "2025-09-09T15:57:41.16Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b6/27/b3922660c45513f9377b3fb42240bec63f203c71416093476ec9aa0719dc/numpy-2.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ed635ff692483b8e3f0fcaa8e7eb8a75ee71aa6d975388224f70821421800cea", size = 18651560, upload-time = "2025-09-09T15:57:43.459Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/5b/8e/3ab61a730bdbbc201bb245a71102aa609f0008b9ed15255500a99cd7f780/numpy-2.3.3-cp313-cp313t-win32.whl", hash = "sha256:a333b4ed33d8dc2b373cc955ca57babc00cd6f9009991d9edc5ddbc1bac36bcd", size = 6442776, upload-time = "2025-09-09T15:57:45.793Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/1c/3a/e22b766b11f6030dc2decdeff5c2fb1610768055603f9f3be88b6d192fb2/numpy-2.3.3-cp313-cp313t-win_amd64.whl", hash = "sha256:4384a169c4d8f97195980815d6fcad04933a7e1ab3b530921c3fef7a1c63426d", size = 12927281, upload-time = "2025-09-09T15:57:47.492Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/7b/42/c2e2bc48c5e9b2a83423f99733950fbefd86f165b468a3d85d52b30bf782/numpy-2.3.3-cp313-cp313t-win_arm64.whl", hash = "sha256:75370986cc0bc66f4ce5110ad35aae6d182cc4ce6433c40ad151f53690130bf1", size = 10265275, upload-time = "2025-09-09T15:57:49.647Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/6b/01/342ad585ad82419b99bcf7cebe99e61da6bedb89e213c5fd71acc467faee/numpy-2.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:cd052f1fa6a78dee696b58a914b7229ecfa41f0a6d96dc663c1220a55e137593", size = 20951527, upload-time = "2025-09-09T15:57:52.006Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ef/d8/204e0d73fc1b7a9ee80ab1fe1983dd33a4d64a4e30a05364b0208e9a241a/numpy-2.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:414a97499480067d305fcac9716c29cf4d0d76db6ebf0bf3cbce666677f12652", size = 14186159, upload-time = "2025-09-09T15:57:54.407Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/22/af/f11c916d08f3a18fb8ba81ab72b5b74a6e42ead4c2846d270eb19845bf74/numpy-2.3.3-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:50a5fe69f135f88a2be9b6ca0481a68a136f6febe1916e4920e12f1a34e708a7", size = 5114624, upload-time = "2025-09-09T15:57:56.5Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fb/11/0ed919c8381ac9d2ffacd63fd1f0c34d27e99cab650f0eb6f110e6ae4858/numpy-2.3.3-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:b912f2ed2b67a129e6a601e9d93d4fa37bef67e54cac442a2f588a54afe5c67a", size = 6642627, upload-time = "2025-09-09T15:57:58.206Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ee/83/deb5f77cb0f7ba6cb52b91ed388b47f8f3c2e9930d4665c600408d9b90b9/numpy-2.3.3-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9e318ee0596d76d4cb3d78535dc005fa60e5ea348cd131a51e99d0bdbe0b54fe", size = 14296926, upload-time = "2025-09-09T15:58:00.035Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/77/cc/70e59dcb84f2b005d4f306310ff0a892518cc0c8000a33d0e6faf7ca8d80/numpy-2.3.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ce020080e4a52426202bdb6f7691c65bb55e49f261f31a8f506c9f6bc7450421", size = 16638958, upload-time = "2025-09-09T15:58:02.738Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b6/5a/b2ab6c18b4257e099587d5b7f903317bd7115333ad8d4ec4874278eafa61/numpy-2.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:e6687dc183aa55dae4a705b35f9c0f8cb178bcaa2f029b241ac5356221d5c021", size = 16071920, upload-time = "2025-09-09T15:58:05.029Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b8/f1/8b3fdc44324a259298520dd82147ff648979bed085feeacc1250ef1656c0/numpy-2.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d8f3b1080782469fdc1718c4ed1d22549b5fb12af0d57d35e992158a772a37cf", size = 18577076, upload-time = "2025-09-09T15:58:07.745Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f0/a1/b87a284fb15a42e9274e7fcea0dad259d12ddbf07c1595b26883151ca3b4/numpy-2.3.3-cp314-cp314-win32.whl", hash = "sha256:cb248499b0bc3be66ebd6578b83e5acacf1d6cb2a77f2248ce0e40fbec5a76d0", size = 6366952, upload-time = "2025-09-09T15:58:10.096Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/70/5f/1816f4d08f3b8f66576d8433a66f8fa35a5acfb3bbd0bf6c31183b003f3d/numpy-2.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:691808c2b26b0f002a032c73255d0bd89751425f379f7bcd22d140db593a96e8", size = 12919322, upload-time = "2025-09-09T15:58:12.138Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8c/de/072420342e46a8ea41c324a555fa90fcc11637583fb8df722936aed1736d/numpy-2.3.3-cp314-cp314-win_arm64.whl", hash = "sha256:9ad12e976ca7b10f1774b03615a2a4bab8addce37ecc77394d8e986927dc0dfe", size = 10478630, upload-time = "2025-09-09T15:58:14.64Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d5/df/ee2f1c0a9de7347f14da5dd3cd3c3b034d1b8607ccb6883d7dd5c035d631/numpy-2.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9cc48e09feb11e1db00b320e9d30a4151f7369afb96bd0e48d942d09da3a0d00", size = 21047987, upload-time = "2025-09-09T15:58:16.889Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d6/92/9453bdc5a4e9e69cf4358463f25e8260e2ffc126d52e10038b9077815989/numpy-2.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:901bf6123879b7f251d3631967fd574690734236075082078e0571977c6a8e6a", size = 14301076, upload-time = "2025-09-09T15:58:20.343Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/13/77/1447b9eb500f028bb44253105bd67534af60499588a5149a94f18f2ca917/numpy-2.3.3-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:7f025652034199c301049296b59fa7d52c7e625017cae4c75d8662e377bf487d", size = 5229491, upload-time = "2025-09-09T15:58:22.481Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3d/f9/d72221b6ca205f9736cb4b2ce3b002f6e45cd67cd6a6d1c8af11a2f0b649/numpy-2.3.3-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:533ca5f6d325c80b6007d4d7fb1984c303553534191024ec6a524a4c92a5935a", size = 6737913, upload-time = "2025-09-09T15:58:24.569Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3c/5f/d12834711962ad9c46af72f79bb31e73e416ee49d17f4c797f72c96b6ca5/numpy-2.3.3-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0edd58682a399824633b66885d699d7de982800053acf20be1eaa46d92009c54", size = 14352811, upload-time = "2025-09-09T15:58:26.416Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a1/0d/fdbec6629d97fd1bebed56cd742884e4eead593611bbe1abc3eb40d304b2/numpy-2.3.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:367ad5d8fbec5d9296d18478804a530f1191e24ab4d75ab408346ae88045d25e", size = 16702689, upload-time = "2025-09-09T15:58:28.831Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9b/09/0a35196dc5575adde1eb97ddfbc3e1687a814f905377621d18ca9bc2b7dd/numpy-2.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:8f6ac61a217437946a1fa48d24c47c91a0c4f725237871117dea264982128097", size = 16133855, upload-time = "2025-09-09T15:58:31.349Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/7a/ca/c9de3ea397d576f1b6753eaa906d4cdef1bf97589a6d9825a349b4729cc2/numpy-2.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:179a42101b845a816d464b6fe9a845dfaf308fdfc7925387195570789bb2c970", size = 18652520, upload-time = "2025-09-09T15:58:33.762Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fd/c2/e5ed830e08cd0196351db55db82f65bc0ab05da6ef2b72a836dcf1936d2f/numpy-2.3.3-cp314-cp314t-win32.whl", hash = "sha256:1250c5d3d2562ec4174bce2e3a1523041595f9b651065e4a4473f5f48a6bc8a5", size = 6515371, upload-time = "2025-09-09T15:58:36.04Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/47/c7/b0f6b5b67f6788a0725f744496badbb604d226bf233ba716683ebb47b570/numpy-2.3.3-cp314-cp314t-win_amd64.whl", hash = "sha256:b37a0b2e5935409daebe82c1e42274d30d9dd355852529eab91dab8dcca7419f", size = 13112576, upload-time = "2025-09-09T15:58:37.927Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/06/b9/33bba5ff6fb679aa0b1f8a07e853f002a6b04b9394db3069a1270a7784ca/numpy-2.3.3-cp314-cp314t-win_arm64.whl", hash = "sha256:78c9f6560dc7e6b3990e32df7ea1a50bbd0e2a111e05209963f5ddcab7073b0b", size = 10545953, upload-time = "2025-09-09T15:58:40.576Z" },
]
[[package]]
name = "nvidia-cublas-cu12"
version = "12.9.1.4"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/77/3c/aa88abe01f3be3d1f8f787d1d33dc83e76fec05945f9a28fbb41cfb99cd5/nvidia_cublas_cu12-12.9.1.4-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:453611eb21a7c1f2c2156ed9f3a45b691deda0440ec550860290dc901af5b4c2", size = 581242350, upload-time = "2025-06-05T20:04:51.979Z" },
]
[[package]]
name = "nvidia-cuda-cupti-cu12"
version = "12.9.79"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/c1/2e/b84e32197e33f39907b455b83395a017e697c07a449a2b15fd07fc1c9981/nvidia_cuda_cupti_cu12-12.9.79-py3-none-manylinux_2_25_x86_64.whl", hash = "sha256:096bcf334f13e1984ba36685ad4c1d6347db214de03dbb6eebb237b41d9d934f", size = 10814997, upload-time = "2025-06-05T20:01:10.168Z" },
]
[[package]]
name = "nvidia-cuda-nvrtc-cu12"
version = "12.9.86"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b8/85/e4af82cc9202023862090bfca4ea827d533329e925c758f0cde964cb54b7/nvidia_cuda_nvrtc_cu12-12.9.86-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:210cf05005a447e29214e9ce50851e83fc5f4358df8b453155d5e1918094dcb4", size = 89568129, upload-time = "2025-06-05T20:02:41.973Z" },
]
[[package]]
name = "nvidia-cuda-runtime-cu12"
version = "12.9.79"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bc/46/a92db19b8309581092a3add7e6fceb4c301a3fd233969856a8cbf042cd3c/nvidia_cuda_runtime_cu12-12.9.79-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:25bba2dfb01d48a9b59ca474a1ac43c6ebf7011f1b0b8cc44f54eb6ac48a96c3", size = 3493179, upload-time = "2025-06-05T20:00:53.735Z" },
]
[[package]]
name = "nvidia-cudnn-cu12"
version = "9.10.2.21"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12", marker = "python_full_version >= '3.14' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'" },
]
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ba/51/e123d997aa098c61d029f76663dedbfb9bc8dcf8c60cbd6adbe42f76d049/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:949452be657fa16687d0930933f032835951ef0892b37d2d53824d1a84dc97a8", size = 706758467, upload-time = "2025-06-06T21:54:08.597Z" },
]
[[package]]
name = "nvidia-cufft-cu12"
version = "11.4.1.4"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12", marker = "python_full_version >= '3.14' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'" },
]
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/95/f4/61e6996dd20481ee834f57a8e9dca28b1869366a135e0d42e2aa8493bdd4/nvidia_cufft_cu12-11.4.1.4-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c67884f2a7d276b4b80eb56a79322a95df592ae5e765cf1243693365ccab4e28", size = 200877592, upload-time = "2025-06-05T20:05:45.862Z" },
]
[[package]]
name = "nvidia-cufile-cu12"
version = "1.14.1.1"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ad/28/b960e06d705a440c030edd84e16888ee14c743390bdb2a6368e92ffe8ef8/nvidia_cufile_cu12-1.14.1.1-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:9552e2231792e94b1ff17bc99e958cc0e6bbbaa4a9d91fa2dbeed97716628fe6", size = 1210714, upload-time = "2025-06-05T20:06:11.898Z" },
]
[[package]]
name = "nvidia-curand-cu12"
version = "10.3.10.19"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/31/44/193a0e171750ca9f8320626e8a1f2381e4077a65e69e2fb9708bd479e34a/nvidia_curand_cu12-10.3.10.19-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:49b274db4780d421bd2ccd362e1415c13887c53c214f0d4b761752b8f9f6aa1e", size = 68295626, upload-time = "2025-05-01T19:39:38.885Z" },
]
[[package]]
name = "nvidia-cusolver-cu12"
version = "11.7.5.82"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12", marker = "python_full_version >= '3.14' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'" },
{ name = "nvidia-cusparse-cu12", marker = "python_full_version >= '3.14' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'" },
{ name = "nvidia-nvjitlink-cu12", marker = "python_full_version >= '3.14' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'" },
]
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/33/40/79b0c64d44d6c166c0964ec1d803d067f4a145cca23e23925fd351d0e642/nvidia_cusolver_cu12-11.7.5.82-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:15da72d1340d29b5b3cf3fd100e3cd53421dde36002eda6ed93811af63c40d88", size = 338117415, upload-time = "2025-06-05T20:07:16.809Z" },
]
[[package]]
name = "nvidia-cusparse-cu12"
version = "12.5.10.65"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12", marker = "python_full_version >= '3.14' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'" },
]
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/12/46/b0fd4b04f86577921feb97d8e2cf028afe04f614d17fb5013de9282c9216/nvidia_cusparse_cu12-12.5.10.65-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:73060ce019ac064a057267c585bf1fd5a353734151f87472ff02b2c5c9984e78", size = 366465088, upload-time = "2025-06-05T20:08:20.413Z" },
]
[[package]]
name = "nvidia-cusparselt-cu12"
version = "0.7.1"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/56/79/12978b96bd44274fe38b5dde5cfb660b1d114f70a65ef962bcbbed99b549/nvidia_cusparselt_cu12-0.7.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f1bb701d6b930d5a7cea44c19ceb973311500847f81b634d802b7b539dc55623", size = 287193691, upload-time = "2025-02-26T00:15:44.104Z" },
]
[[package]]
name = "nvidia-nccl-cu12"
version = "2.27.3"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/5c/5b/4e4fff7bad39adf89f735f2bc87248c81db71205b62bcc0d5ca5b606b3c3/nvidia_nccl_cu12-2.27.3-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:adf27ccf4238253e0b826bce3ff5fa532d65fc42322c8bfdfaf28024c0fbe039", size = 322364134, upload-time = "2025-06-03T21:58:04.013Z" },
]
[[package]]
name = "nvidia-nvjitlink-cu12"
version = "12.9.86"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/46/0c/c75bbfb967457a0b7670b8ad267bfc4fffdf341c074e0a80db06c24ccfd4/nvidia_nvjitlink_cu12-12.9.86-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:e3f1171dbdc83c5932a45f0f4c99180a70de9bd2718c1ab77d14104f6d7147f9", size = 39748338, upload-time = "2025-06-05T20:10:25.613Z" },
]
[[package]]
name = "nvidia-nvtx-cu12"
version = "12.9.79"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/86/ed/bb230dce7741f2778ba2ae3e8778fdb8bc58eee9fd95f07bf7b2d18e8081/nvidia_nvtx_cu12-12.9.79-py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:fec150986817f2b4e7eed72ed059f2dcb9ba3856b9a96134e448eac946a6952f", size = 85504, upload-time = "2025-06-05T20:03:10.21Z" },
]
[[package]]
name = "packaging"
version = "25.0"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727, upload-time = "2025-04-19T11:48:59.673Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" },
]
[[package]]
name = "pillow"
version = "11.3.0"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f3/0d/d0d6dea55cd152ce3d6767bb38a8fc10e33796ba4ba210cbab9354b6d238/pillow-11.3.0.tar.gz", hash = "sha256:3828ee7586cd0b2091b6209e5ad53e20d0649bbe87164a459d0676e035e8f523", size = 47113069, upload-time = "2025-07-01T09:16:30.666Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/1e/93/0952f2ed8db3a5a4c7a11f91965d6184ebc8cd7cbb7941a260d5f018cd2d/pillow-11.3.0-cp313-cp313-ios_13_0_arm64_iphoneos.whl", hash = "sha256:1c627742b539bba4309df89171356fcb3cc5a9178355b2727d1b74a6cf155fbd", size = 2128328, upload-time = "2025-07-01T09:14:35.276Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/4b/e8/100c3d114b1a0bf4042f27e0f87d2f25e857e838034e98ca98fe7b8c0a9c/pillow-11.3.0-cp313-cp313-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:30b7c02f3899d10f13d7a48163c8969e4e653f8b43416d23d13d1bbfdc93b9f8", size = 2170652, upload-time = "2025-07-01T09:14:37.203Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/aa/86/3f758a28a6e381758545f7cdb4942e1cb79abd271bea932998fc0db93cb6/pillow-11.3.0-cp313-cp313-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:7859a4cc7c9295f5838015d8cc0a9c215b77e43d07a25e460f35cf516df8626f", size = 2227443, upload-time = "2025-07-01T09:14:39.344Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/01/f4/91d5b3ffa718df2f53b0dc109877993e511f4fd055d7e9508682e8aba092/pillow-11.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ec1ee50470b0d050984394423d96325b744d55c701a439d2bd66089bff963d3c", size = 5278474, upload-time = "2025-07-01T09:14:41.843Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f9/0e/37d7d3eca6c879fbd9dba21268427dffda1ab00d4eb05b32923d4fbe3b12/pillow-11.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7db51d222548ccfd274e4572fdbf3e810a5e66b00608862f947b163e613b67dd", size = 4686038, upload-time = "2025-07-01T09:14:44.008Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ff/b0/3426e5c7f6565e752d81221af9d3676fdbb4f352317ceafd42899aaf5d8a/pillow-11.3.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2d6fcc902a24ac74495df63faad1884282239265c6839a0a6416d33faedfae7e", size = 5864407, upload-time = "2025-07-03T13:10:15.628Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fc/c1/c6c423134229f2a221ee53f838d4be9d82bab86f7e2f8e75e47b6bf6cd77/pillow-11.3.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f0f5d8f4a08090c6d6d578351a2b91acf519a54986c055af27e7a93feae6d3f1", size = 7639094, upload-time = "2025-07-03T13:10:21.857Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ba/c9/09e6746630fe6372c67c648ff9deae52a2bc20897d51fa293571977ceb5d/pillow-11.3.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c37d8ba9411d6003bba9e518db0db0c58a680ab9fe5179f040b0463644bc9805", size = 5973503, upload-time = "2025-07-01T09:14:45.698Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d5/1c/a2a29649c0b1983d3ef57ee87a66487fdeb45132df66ab30dd37f7dbe162/pillow-11.3.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:13f87d581e71d9189ab21fe0efb5a23e9f28552d5be6979e84001d3b8505abe8", size = 6642574, upload-time = "2025-07-01T09:14:47.415Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/36/de/d5cc31cc4b055b6c6fd990e3e7f0f8aaf36229a2698501bcb0cdf67c7146/pillow-11.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:023f6d2d11784a465f09fd09a34b150ea4672e85fb3d05931d89f373ab14abb2", size = 6084060, upload-time = "2025-07-01T09:14:49.636Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d5/ea/502d938cbaeec836ac28a9b730193716f0114c41325db428e6b280513f09/pillow-11.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:45dfc51ac5975b938e9809451c51734124e73b04d0f0ac621649821a63852e7b", size = 6721407, upload-time = "2025-07-01T09:14:51.962Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/45/9c/9c5e2a73f125f6cbc59cc7087c8f2d649a7ae453f83bd0362ff7c9e2aee2/pillow-11.3.0-cp313-cp313-win32.whl", hash = "sha256:a4d336baed65d50d37b88ca5b60c0fa9d81e3a87d4a7930d3880d1624d5b31f3", size = 6273841, upload-time = "2025-07-01T09:14:54.142Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/23/85/397c73524e0cd212067e0c969aa245b01d50183439550d24d9f55781b776/pillow-11.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:0bce5c4fd0921f99d2e858dc4d4d64193407e1b99478bc5cacecba2311abde51", size = 6978450, upload-time = "2025-07-01T09:14:56.436Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/17/d2/622f4547f69cd173955194b78e4d19ca4935a1b0f03a302d655c9f6aae65/pillow-11.3.0-cp313-cp313-win_arm64.whl", hash = "sha256:1904e1264881f682f02b7f8167935cce37bc97db457f8e7849dc3a6a52b99580", size = 2423055, upload-time = "2025-07-01T09:14:58.072Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/dd/80/a8a2ac21dda2e82480852978416cfacd439a4b490a501a288ecf4fe2532d/pillow-11.3.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4c834a3921375c48ee6b9624061076bc0a32a60b5532b322cc0ea64e639dd50e", size = 5281110, upload-time = "2025-07-01T09:14:59.79Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/44/d6/b79754ca790f315918732e18f82a8146d33bcd7f4494380457ea89eb883d/pillow-11.3.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5e05688ccef30ea69b9317a9ead994b93975104a677a36a8ed8106be9260aa6d", size = 4689547, upload-time = "2025-07-01T09:15:01.648Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/49/20/716b8717d331150cb00f7fdd78169c01e8e0c219732a78b0e59b6bdb2fd6/pillow-11.3.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1019b04af07fc0163e2810167918cb5add8d74674b6267616021ab558dc98ced", size = 5901554, upload-time = "2025-07-03T13:10:27.018Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/74/cf/a9f3a2514a65bb071075063a96f0a5cf949c2f2fce683c15ccc83b1c1cab/pillow-11.3.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f944255db153ebb2b19c51fe85dd99ef0ce494123f21b9db4877ffdfc5590c7c", size = 7669132, upload-time = "2025-07-03T13:10:33.01Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/98/3c/da78805cbdbee9cb43efe8261dd7cc0b4b93f2ac79b676c03159e9db2187/pillow-11.3.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1f85acb69adf2aaee8b7da124efebbdb959a104db34d3a2cb0f3793dbae422a8", size = 6005001, upload-time = "2025-07-01T09:15:03.365Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/6c/fa/ce044b91faecf30e635321351bba32bab5a7e034c60187fe9698191aef4f/pillow-11.3.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:05f6ecbeff5005399bb48d198f098a9b4b6bdf27b8487c7f38ca16eeb070cd59", size = 6668814, upload-time = "2025-07-01T09:15:05.655Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/7b/51/90f9291406d09bf93686434f9183aba27b831c10c87746ff49f127ee80cb/pillow-11.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a7bc6e6fd0395bc052f16b1a8670859964dbd7003bd0af2ff08342eb6e442cfe", size = 6113124, upload-time = "2025-07-01T09:15:07.358Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/cd/5a/6fec59b1dfb619234f7636d4157d11fb4e196caeee220232a8d2ec48488d/pillow-11.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:83e1b0161c9d148125083a35c1c5a89db5b7054834fd4387499e06552035236c", size = 6747186, upload-time = "2025-07-01T09:15:09.317Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/49/6b/00187a044f98255225f172de653941e61da37104a9ea60e4f6887717e2b5/pillow-11.3.0-cp313-cp313t-win32.whl", hash = "sha256:2a3117c06b8fb646639dce83694f2f9eac405472713fcb1ae887469c0d4f6788", size = 6277546, upload-time = "2025-07-01T09:15:11.311Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e8/5c/6caaba7e261c0d75bab23be79f1d06b5ad2a2ae49f028ccec801b0e853d6/pillow-11.3.0-cp313-cp313t-win_amd64.whl", hash = "sha256:857844335c95bea93fb39e0fa2726b4d9d758850b34075a7e3ff4f4fa3aa3b31", size = 6985102, upload-time = "2025-07-01T09:15:13.164Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f3/7e/b623008460c09a0cb38263c93b828c666493caee2eb34ff67f778b87e58c/pillow-11.3.0-cp313-cp313t-win_arm64.whl", hash = "sha256:8797edc41f3e8536ae4b10897ee2f637235c94f27404cac7297f7b607dd0716e", size = 2424803, upload-time = "2025-07-01T09:15:15.695Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/73/f4/04905af42837292ed86cb1b1dabe03dce1edc008ef14c473c5c7e1443c5d/pillow-11.3.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d9da3df5f9ea2a89b81bb6087177fb1f4d1c7146d583a3fe5c672c0d94e55e12", size = 5278520, upload-time = "2025-07-01T09:15:17.429Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/41/b0/33d79e377a336247df6348a54e6d2a2b85d644ca202555e3faa0cf811ecc/pillow-11.3.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:0b275ff9b04df7b640c59ec5a3cb113eefd3795a8df80bac69646ef699c6981a", size = 4686116, upload-time = "2025-07-01T09:15:19.423Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/49/2d/ed8bc0ab219ae8768f529597d9509d184fe8a6c4741a6864fea334d25f3f/pillow-11.3.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0743841cabd3dba6a83f38a92672cccbd69af56e3e91777b0ee7f4dba4385632", size = 5864597, upload-time = "2025-07-03T13:10:38.404Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b5/3d/b932bb4225c80b58dfadaca9d42d08d0b7064d2d1791b6a237f87f661834/pillow-11.3.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2465a69cf967b8b49ee1b96d76718cd98c4e925414ead59fdf75cf0fd07df673", size = 7638246, upload-time = "2025-07-03T13:10:44.987Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/09/b5/0487044b7c096f1b48f0d7ad416472c02e0e4bf6919541b111efd3cae690/pillow-11.3.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:41742638139424703b4d01665b807c6468e23e699e8e90cffefe291c5832b027", size = 5973336, upload-time = "2025-07-01T09:15:21.237Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a8/2d/524f9318f6cbfcc79fbc004801ea6b607ec3f843977652fdee4857a7568b/pillow-11.3.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:93efb0b4de7e340d99057415c749175e24c8864302369e05914682ba642e5d77", size = 6642699, upload-time = "2025-07-01T09:15:23.186Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/6f/d2/a9a4f280c6aefedce1e8f615baaa5474e0701d86dd6f1dede66726462bbd/pillow-11.3.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:7966e38dcd0fa11ca390aed7c6f20454443581d758242023cf36fcb319b1a874", size = 6083789, upload-time = "2025-07-01T09:15:25.1Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fe/54/86b0cd9dbb683a9d5e960b66c7379e821a19be4ac5810e2e5a715c09a0c0/pillow-11.3.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:98a9afa7b9007c67ed84c57c9e0ad86a6000da96eaa638e4f8abe5b65ff83f0a", size = 6720386, upload-time = "2025-07-01T09:15:27.378Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e7/95/88efcaf384c3588e24259c4203b909cbe3e3c2d887af9e938c2022c9dd48/pillow-11.3.0-cp314-cp314-win32.whl", hash = "sha256:02a723e6bf909e7cea0dac1b0e0310be9d7650cd66222a5f1c571455c0a45214", size = 6370911, upload-time = "2025-07-01T09:15:29.294Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/2e/cc/934e5820850ec5eb107e7b1a72dd278140731c669f396110ebc326f2a503/pillow-11.3.0-cp314-cp314-win_amd64.whl", hash = "sha256:a418486160228f64dd9e9efcd132679b7a02a5f22c982c78b6fc7dab3fefb635", size = 7117383, upload-time = "2025-07-01T09:15:31.128Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d6/e9/9c0a616a71da2a5d163aa37405e8aced9a906d574b4a214bede134e731bc/pillow-11.3.0-cp314-cp314-win_arm64.whl", hash = "sha256:155658efb5e044669c08896c0c44231c5e9abcaadbc5cd3648df2f7c0b96b9a6", size = 2511385, upload-time = "2025-07-01T09:15:33.328Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/1a/33/c88376898aff369658b225262cd4f2659b13e8178e7534df9e6e1fa289f6/pillow-11.3.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:59a03cdf019efbfeeed910bf79c7c93255c3d54bc45898ac2a4140071b02b4ae", size = 5281129, upload-time = "2025-07-01T09:15:35.194Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/1f/70/d376247fb36f1844b42910911c83a02d5544ebd2a8bad9efcc0f707ea774/pillow-11.3.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:f8a5827f84d973d8636e9dc5764af4f0cf2318d26744b3d902931701b0d46653", size = 4689580, upload-time = "2025-07-01T09:15:37.114Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/eb/1c/537e930496149fbac69efd2fc4329035bbe2e5475b4165439e3be9cb183b/pillow-11.3.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ee92f2fd10f4adc4b43d07ec5e779932b4eb3dbfbc34790ada5a6669bc095aa6", size = 5902860, upload-time = "2025-07-03T13:10:50.248Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bd/57/80f53264954dcefeebcf9dae6e3eb1daea1b488f0be8b8fef12f79a3eb10/pillow-11.3.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c96d333dcf42d01f47b37e0979b6bd73ec91eae18614864622d9b87bbd5bbf36", size = 7670694, upload-time = "2025-07-03T13:10:56.432Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/70/ff/4727d3b71a8578b4587d9c276e90efad2d6fe0335fd76742a6da08132e8c/pillow-11.3.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4c96f993ab8c98460cd0c001447bff6194403e8b1d7e149ade5f00594918128b", size = 6005888, upload-time = "2025-07-01T09:15:39.436Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/05/ae/716592277934f85d3be51d7256f3636672d7b1abfafdc42cf3f8cbd4b4c8/pillow-11.3.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41342b64afeba938edb034d122b2dda5db2139b9a4af999729ba8818e0056477", size = 6670330, upload-time = "2025-07-01T09:15:41.269Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e7/bb/7fe6cddcc8827b01b1a9766f5fdeb7418680744f9082035bdbabecf1d57f/pillow-11.3.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:068d9c39a2d1b358eb9f245ce7ab1b5c3246c7c8c7d9ba58cfa5b43146c06e50", size = 6114089, upload-time = "2025-07-01T09:15:43.13Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8b/f5/06bfaa444c8e80f1a8e4bff98da9c83b37b5be3b1deaa43d27a0db37ef84/pillow-11.3.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:a1bc6ba083b145187f648b667e05a2534ecc4b9f2784c2cbe3089e44868f2b9b", size = 6748206, upload-time = "2025-07-01T09:15:44.937Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f0/77/bc6f92a3e8e6e46c0ca78abfffec0037845800ea38c73483760362804c41/pillow-11.3.0-cp314-cp314t-win32.whl", hash = "sha256:118ca10c0d60b06d006be10a501fd6bbdfef559251ed31b794668ed569c87e12", size = 6377370, upload-time = "2025-07-01T09:15:46.673Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/4a/82/3a721f7d69dca802befb8af08b7c79ebcab461007ce1c18bd91a5d5896f9/pillow-11.3.0-cp314-cp314t-win_amd64.whl", hash = "sha256:8924748b688aa210d79883357d102cd64690e56b923a186f35a82cbc10f997db", size = 7121500, upload-time = "2025-07-01T09:15:48.512Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/89/c7/5572fa4a3f45740eaab6ae86fcdf7195b55beac1371ac8c619d880cfe948/pillow-11.3.0-cp314-cp314t-win_arm64.whl", hash = "sha256:79ea0d14d3ebad43ec77ad5272e6ff9bba5b679ef73375ea760261207fa8e0aa", size = 2512835, upload-time = "2025-07-01T09:15:50.399Z" },
]
[[package]]
name = "pyparsing"
version = "3.2.5"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f2/a5/181488fc2b9d093e3972d2a472855aae8a03f000592dbfce716a512b3359/pyparsing-3.2.5.tar.gz", hash = "sha256:2df8d5b7b2802ef88e8d016a2eb9c7aeaa923529cd251ed0fe4608275d4105b6", size = 1099274, upload-time = "2025-09-21T04:11:06.277Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/10/5e/1aa9a93198c6b64513c9d7752de7422c06402de6600a8767da1524f9570b/pyparsing-3.2.5-py3-none-any.whl", hash = "sha256:e38a4f02064cf41fe6593d328d0512495ad1f3d8a91c4f73fc401b3079a59a5e", size = 113890, upload-time = "2025-09-21T04:11:04.117Z" },
]
[[package]]
name = "python-dateutil"
version = "2.9.0.post0"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
dependencies = [
{ name = "six" },
]
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432, upload-time = "2024-03-01T18:36:20.211Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892, upload-time = "2024-03-01T18:36:18.57Z" },
]
[[package]]
name = "setuptools"
version = "80.9.0"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/18/5d/3bf57dcd21979b887f014ea83c24ae194cfcd12b9e0fda66b957c69d1fca/setuptools-80.9.0.tar.gz", hash = "sha256:f36b47402ecde768dbfafc46e8e4207b4360c654f1f3bb84475f0a28628fb19c", size = 1319958, upload-time = "2025-05-27T00:56:51.443Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486, upload-time = "2025-05-27T00:56:49.664Z" },
]
[[package]]
name = "six"
version = "1.17.0"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031, upload-time = "2024-12-04T17:35:28.174Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050, upload-time = "2024-12-04T17:35:26.475Z" },
]
[[package]]
name = "sympy"
version = "1.14.0"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
dependencies = [
{ name = "mpmath" },
]
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/83/d3/803453b36afefb7c2bb238361cd4ae6125a569b4db67cd9e79846ba2d68c/sympy-1.14.0.tar.gz", hash = "sha256:d3d3fe8df1e5a0b42f0e7bdf50541697dbe7d23746e894990c030e2b05e72517", size = 7793921, upload-time = "2025-04-27T18:05:01.611Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl", hash = "sha256:e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5", size = 6299353, upload-time = "2025-04-27T18:04:59.103Z" },
]
[[package]]
name = "torch"
version = "2.8.0+cu129"
source = { registry = "https://download.pytorch.org/whl/cu129" }
dependencies = [
{ name = "filelock" },
{ name = "fsspec" },
{ name = "jinja2" },
{ name = "networkx" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cufile-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusparselt-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "setuptools" },
{ name = "sympy" },
{ name = "triton", marker = "sys_platform == 'linux'" },
{ name = "typing-extensions" },
]
wheels = [
{ url = "https://download.pytorch.org/whl/cu129/torch-2.8.0%2Bcu129-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:ad2d64316635e7ab06f6c973a252526d59a92a2045825c102f876914a72304d0" },
{ url = "https://download.pytorch.org/whl/cu129/torch-2.8.0%2Bcu129-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:563740167be2189b71530b503f0c8a8d7a8267dd49d4de6f9c5f1d23fbe237df" },
{ url = "https://download.pytorch.org/whl/cu129/torch-2.8.0%2Bcu129-cp313-cp313-win_amd64.whl", hash = "sha256:2cef066f9759ff4d7868a8c3695aa60d9a878598acb3685bb1ef2fdac29dcd68" },
{ url = "https://download.pytorch.org/whl/cu129/torch-2.8.0%2Bcu129-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:2982bf34249cbb38f1090e71ad7097a214a21023ccdc0413961986ab7d0396e6" },
{ url = "https://download.pytorch.org/whl/cu129/torch-2.8.0%2Bcu129-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:6344260959ebcfa6dae458e1c4365195bcfdf00f4f1f1ad438cbaf50756829ed" },
{ url = "https://download.pytorch.org/whl/cu129/torch-2.8.0%2Bcu129-cp313-cp313t-win_amd64.whl", hash = "sha256:9c0cd89e54ce44ce3208c5cf4163773b9cda0067e4b48cfcac56a4e04af52040" },
]
[[package]]
name = "torchvision"
version = "0.23.0"
source = { registry = "https://download.pytorch.org/whl/cu129" }
resolution-markers = [
"python_full_version < '3.14' and platform_machine == 'aarch64' and platform_python_implementation == 'CPython' and sys_platform == 'linux'",
]
dependencies = [
{ name = "numpy", marker = "python_full_version < '3.14' and platform_machine == 'aarch64' and platform_python_implementation == 'CPython' and sys_platform == 'linux'" },
{ name = "pillow", marker = "python_full_version < '3.14' and platform_machine == 'aarch64' and platform_python_implementation == 'CPython' and sys_platform == 'linux'" },
{ name = "torch", marker = "python_full_version < '3.14' and platform_machine == 'aarch64' and platform_python_implementation == 'CPython' and sys_platform == 'linux'" },
]
wheels = [
{ url = "https://download.pytorch.org/whl/cu129/torchvision-0.23.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:20f7e25a24f91d93d09398b80929dec805c4ee2f5527fad8eecd6e43dc5fd5d0" },
{ url = "https://download.pytorch.org/whl/cu129/torchvision-0.23.0-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:cb70cc000e6a398270044c3406a89ee8ab6157a4e81b5d40c5904e1d0e22e2f8" },
]
[[package]]
name = "torchvision"
version = "0.23.0+cu129"
source = { registry = "https://download.pytorch.org/whl/cu129" }
resolution-markers = [
"python_full_version >= '3.14'",
"(python_full_version < '3.14' and platform_machine != 'aarch64') or (python_full_version < '3.14' and platform_python_implementation != 'CPython') or (python_full_version < '3.14' and sys_platform != 'linux')",
]
dependencies = [
{ name = "numpy", marker = "python_full_version >= '3.14' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'" },
{ name = "pillow", marker = "python_full_version >= '3.14' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'" },
{ name = "torch", marker = "python_full_version >= '3.14' or platform_machine != 'aarch64' or platform_python_implementation != 'CPython' or sys_platform != 'linux'" },
]
wheels = [
{ url = "https://download.pytorch.org/whl/cu129/torchvision-0.23.0%2Bcu129-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:04316e24ddd1cee3b301208811a9d7c4cfca5f566ea367f33bda059d8f0e012e" },
{ url = "https://download.pytorch.org/whl/cu129/torchvision-0.23.0%2Bcu129-cp313-cp313-win_amd64.whl", hash = "sha256:a486a0cee466807a17749d0b916d52088343453dc911baa20f0f459b2fa43c9a" },
{ url = "https://download.pytorch.org/whl/cu129/torchvision-0.23.0%2Bcu129-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:c718f6d2c0e61feed39763925eea3e1f42979f6b21e61276f487409168d9e352" },
{ url = "https://download.pytorch.org/whl/cu129/torchvision-0.23.0%2Bcu129-cp313-cp313t-win_amd64.whl", hash = "sha256:8218c1f614972abb4710afde96d0f70b174b235f390e165e6fd4cdd5cee6d93d" },
]
[[package]]
name = "triton"
version = "3.4.0"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
dependencies = [
{ name = "setuptools" },
]
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/30/7b/0a685684ed5322d2af0bddefed7906674f67974aa88b0fae6e82e3b766f6/triton-3.4.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:00be2964616f4c619193cb0d1b29a99bd4b001d7dc333816073f92cf2a8ccdeb", size = 155569223, upload-time = "2025-07-30T19:58:44.017Z" },
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/20/63/8cb444ad5cdb25d999b7d647abac25af0ee37d292afc009940c05b82dda0/triton-3.4.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7936b18a3499ed62059414d7df563e6c163c5e16c3773678a3ee3d417865035d", size = 155659780, upload-time = "2025-07-30T19:58:51.171Z" },
]
[[package]]
name = "typing-extensions"
version = "4.15.0"
source = { registry = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple" }
sdist = { url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/72/94/1a15dd82efb362ac84269196e94cf00f187f7ed21c242792a923cdb1c61f/typing_extensions-4.15.0.tar.gz", hash = "sha256:0cea48d173cc12fa28ecabc3b837ea3cf6f38c6d1136f85cbaaf598984861466", size = 109391, upload-time = "2025-08-25T13:49:26.313Z" }
wheels = [
{ url = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614, upload-time = "2025-08-25T13:49:24.86Z" },
]