1. LLM接口改为字节级流式接口,防止超时错误,也避免utf-8长字节字符拼接错误
This commit is contained in:
@@ -5,7 +5,8 @@ Unified OpenAI-compatible LLM client for the Insight Engine, with retry support.
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any, Dict, Optional, Iterator, Generator
|
||||
from loguru import logger
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
@@ -82,6 +83,76 @@ class LLMClient:
|
||||
return self.validate_response(response.choices[0].message.content)
|
||||
return ""
|
||||
|
||||
@with_retry(LLM_RETRY_CONFIG)
|
||||
def stream_invoke(self, system_prompt: str, user_prompt: str, **kwargs) -> Generator[str, None, None]:
|
||||
"""
|
||||
流式调用LLM,逐步返回响应内容
|
||||
|
||||
Args:
|
||||
system_prompt: 系统提示词
|
||||
user_prompt: 用户提示词
|
||||
**kwargs: 额外参数(temperature, top_p等)
|
||||
|
||||
Yields:
|
||||
响应文本块(str)
|
||||
"""
|
||||
current_time = datetime.now().strftime("%Y年%m月%d日%H时%M分")
|
||||
time_prefix = f"今天的实际时间是{current_time}"
|
||||
if user_prompt:
|
||||
user_prompt = f"{time_prefix}\n{user_prompt}"
|
||||
else:
|
||||
user_prompt = time_prefix
|
||||
messages = [
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": user_prompt},
|
||||
]
|
||||
|
||||
allowed_keys = {"temperature", "top_p", "presence_penalty", "frequency_penalty"}
|
||||
extra_params = {key: value for key, value in kwargs.items() if key in allowed_keys and value is not None}
|
||||
# 强制使用流式
|
||||
extra_params["stream"] = True
|
||||
|
||||
timeout = kwargs.pop("timeout", self.timeout)
|
||||
|
||||
try:
|
||||
stream = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=messages,
|
||||
timeout=timeout,
|
||||
**extra_params,
|
||||
)
|
||||
|
||||
for chunk in stream:
|
||||
if chunk.choices and len(chunk.choices) > 0:
|
||||
delta = chunk.choices[0].delta
|
||||
if delta and delta.content:
|
||||
yield delta.content
|
||||
except Exception as e:
|
||||
logger.error(f"流式请求失败: {str(e)}")
|
||||
raise e
|
||||
|
||||
def stream_invoke_to_string(self, system_prompt: str, user_prompt: str, **kwargs) -> str:
|
||||
"""
|
||||
流式调用LLM并安全地拼接为完整字符串(避免UTF-8多字节字符截断)
|
||||
|
||||
Args:
|
||||
system_prompt: 系统提示词
|
||||
user_prompt: 用户提示词
|
||||
**kwargs: 额外参数(temperature, top_p等)
|
||||
|
||||
Returns:
|
||||
完整的响应字符串
|
||||
"""
|
||||
# 以字节形式收集所有块
|
||||
byte_chunks = []
|
||||
for chunk in self.stream_invoke(system_prompt, user_prompt, **kwargs):
|
||||
byte_chunks.append(chunk.encode('utf-8'))
|
||||
|
||||
# 拼接所有字节,然后一次性解码
|
||||
if byte_chunks:
|
||||
return b''.join(byte_chunks).decode('utf-8', errors='replace')
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def validate_response(response: Optional[str]) -> str:
|
||||
if response is None:
|
||||
|
||||
@@ -70,8 +70,8 @@ class ReportFormattingNode(BaseNode):
|
||||
|
||||
logger.info("正在格式化最终报告")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(
|
||||
# 调用LLM(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(
|
||||
SYSTEM_PROMPT_REPORT_FORMATTING,
|
||||
message,
|
||||
)
|
||||
|
||||
@@ -51,8 +51,8 @@ class ReportStructureNode(StateMutationNode):
|
||||
try:
|
||||
logger.info(f"正在为查询生成报告结构: {self.query}")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_REPORT_STRUCTURE, self.query)
|
||||
# 调用LLM(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_REPORT_STRUCTURE, self.query)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
|
||||
@@ -65,8 +65,8 @@ class FirstSearchNode(BaseNode):
|
||||
|
||||
logger.info("正在生成首次搜索查询")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_FIRST_SEARCH, message)
|
||||
# 调用LLM(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_FIRST_SEARCH, message)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
@@ -200,8 +200,8 @@ class ReflectionNode(BaseNode):
|
||||
|
||||
logger.info("正在进行反思并生成新搜索查询")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_REFLECTION, message)
|
||||
# 调用LLM(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_REFLECTION, message)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
|
||||
@@ -99,8 +99,8 @@ class FirstSummaryNode(StateMutationNode):
|
||||
|
||||
logger.info("正在生成首次段落总结")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_FIRST_SUMMARY, message)
|
||||
# 调用LLM(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_FIRST_SUMMARY, message)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
@@ -264,8 +264,8 @@ class ReflectionSummaryNode(StateMutationNode):
|
||||
|
||||
logger.info("正在生成反思总结")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_REFLECTION_SUMMARY, message)
|
||||
# 调用LLM(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_REFLECTION_SUMMARY, message)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
|
||||
@@ -5,7 +5,8 @@ Unified OpenAI-compatible LLM client for the Media Engine, with retry support.
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any, Dict, Optional, Generator
|
||||
from loguru import logger
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
@@ -85,6 +86,76 @@ class LLMClient:
|
||||
return self.validate_response(response.choices[0].message.content)
|
||||
return ""
|
||||
|
||||
@with_retry(LLM_RETRY_CONFIG)
|
||||
def stream_invoke(self, system_prompt: str, user_prompt: str, **kwargs) -> Generator[str, None, None]:
|
||||
"""
|
||||
流式调用LLM,逐步返回响应内容
|
||||
|
||||
Args:
|
||||
system_prompt: 系统提示词
|
||||
user_prompt: 用户提示词
|
||||
**kwargs: 额外参数(temperature, top_p等)
|
||||
|
||||
Yields:
|
||||
响应文本块(str)
|
||||
"""
|
||||
current_time = datetime.now().strftime("%Y年%m月%d日%H时%M分")
|
||||
time_prefix = f"今天的实际时间是{current_time}"
|
||||
if user_prompt:
|
||||
user_prompt = f"{time_prefix}\n{user_prompt}"
|
||||
else:
|
||||
user_prompt = time_prefix
|
||||
messages = [
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": user_prompt},
|
||||
]
|
||||
|
||||
allowed_keys = {"temperature", "top_p", "presence_penalty", "frequency_penalty"}
|
||||
extra_params = {key: value for key, value in kwargs.items() if key in allowed_keys and value is not None}
|
||||
# 强制使用流式
|
||||
extra_params["stream"] = True
|
||||
|
||||
timeout = kwargs.pop("timeout", self.timeout)
|
||||
|
||||
try:
|
||||
stream = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=messages,
|
||||
timeout=timeout,
|
||||
**extra_params,
|
||||
)
|
||||
|
||||
for chunk in stream:
|
||||
if chunk.choices and len(chunk.choices) > 0:
|
||||
delta = chunk.choices[0].delta
|
||||
if delta and delta.content:
|
||||
yield delta.content
|
||||
except Exception as e:
|
||||
logger.error(f"流式请求失败: {str(e)}")
|
||||
raise e
|
||||
|
||||
def stream_invoke_to_string(self, system_prompt: str, user_prompt: str, **kwargs) -> str:
|
||||
"""
|
||||
流式调用LLM并安全地拼接为完整字符串(避免UTF-8多字节字符截断)
|
||||
|
||||
Args:
|
||||
system_prompt: 系统提示词
|
||||
user_prompt: 用户提示词
|
||||
**kwargs: 额外参数(temperature, top_p等)
|
||||
|
||||
Returns:
|
||||
完整的响应字符串
|
||||
"""
|
||||
# 以字节形式收集所有块
|
||||
byte_chunks = []
|
||||
for chunk in self.stream_invoke(system_prompt, user_prompt, **kwargs):
|
||||
byte_chunks.append(chunk.encode('utf-8'))
|
||||
|
||||
# 拼接所有字节,然后一次性解码
|
||||
if byte_chunks:
|
||||
return b''.join(byte_chunks).decode('utf-8', errors='replace')
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def validate_response(response: Optional[str]) -> str:
|
||||
if response is None:
|
||||
|
||||
@@ -68,8 +68,8 @@ class ReportFormattingNode(BaseNode):
|
||||
|
||||
logger.info("正在格式化最终报告")
|
||||
|
||||
# 调用LLM生成Markdown格式
|
||||
response = self.llm_client.invoke(
|
||||
# 调用LLM生成Markdown格式(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(
|
||||
SYSTEM_PROMPT_REPORT_FORMATTING,
|
||||
message,
|
||||
)
|
||||
|
||||
@@ -52,7 +52,7 @@ class ReportStructureNode(StateMutationNode):
|
||||
logger.info(f"正在为查询生成报告结构: {self.query}")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_REPORT_STRUCTURE, self.query)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_REPORT_STRUCTURE, self.query)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
|
||||
@@ -66,7 +66,7 @@ class FirstSearchNode(BaseNode):
|
||||
logger.info("正在生成首次搜索查询")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_FIRST_SEARCH, message)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_FIRST_SEARCH, message)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
@@ -201,7 +201,7 @@ class ReflectionNode(BaseNode):
|
||||
logger.info("正在进行反思并生成新搜索查询")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_REFLECTION, message)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_REFLECTION, message)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
|
||||
@@ -99,8 +99,8 @@ class FirstSummaryNode(StateMutationNode):
|
||||
|
||||
logger.info("正在生成首次段落总结")
|
||||
|
||||
# 调用LLM生成总结
|
||||
response = self.llm_client.invoke(
|
||||
# 调用LLM生成总结(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(
|
||||
SYSTEM_PROMPT_FIRST_SUMMARY,
|
||||
message,
|
||||
)
|
||||
@@ -267,8 +267,8 @@ class ReflectionSummaryNode(StateMutationNode):
|
||||
|
||||
logger.info("正在生成反思总结")
|
||||
|
||||
# 调用LLM生成总结
|
||||
response = self.llm_client.invoke(
|
||||
# 调用LLM生成总结(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(
|
||||
SYSTEM_PROMPT_REFLECTION_SUMMARY,
|
||||
message,
|
||||
)
|
||||
|
||||
@@ -5,7 +5,8 @@ Unified OpenAI-compatible LLM client for the Query Engine, with retry support.
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any, Dict, Optional, Generator
|
||||
from loguru import logger
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
@@ -82,6 +83,76 @@ class LLMClient:
|
||||
return self.validate_response(response.choices[0].message.content)
|
||||
return ""
|
||||
|
||||
@with_retry(LLM_RETRY_CONFIG)
|
||||
def stream_invoke(self, system_prompt: str, user_prompt: str, **kwargs) -> Generator[str, None, None]:
|
||||
"""
|
||||
流式调用LLM,逐步返回响应内容
|
||||
|
||||
Args:
|
||||
system_prompt: 系统提示词
|
||||
user_prompt: 用户提示词
|
||||
**kwargs: 额外参数(temperature, top_p等)
|
||||
|
||||
Yields:
|
||||
响应文本块(str)
|
||||
"""
|
||||
current_time = datetime.now().strftime("%Y年%m月%d日%H时%M分")
|
||||
time_prefix = f"今天的实际时间是{current_time}"
|
||||
if user_prompt:
|
||||
user_prompt = f"{time_prefix}\n{user_prompt}"
|
||||
else:
|
||||
user_prompt = time_prefix
|
||||
messages = [
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": user_prompt},
|
||||
]
|
||||
|
||||
allowed_keys = {"temperature", "top_p", "presence_penalty", "frequency_penalty"}
|
||||
extra_params = {key: value for key, value in kwargs.items() if key in allowed_keys and value is not None}
|
||||
# 强制使用流式
|
||||
extra_params["stream"] = True
|
||||
|
||||
timeout = kwargs.pop("timeout", self.timeout)
|
||||
|
||||
try:
|
||||
stream = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=messages,
|
||||
timeout=timeout,
|
||||
**extra_params,
|
||||
)
|
||||
|
||||
for chunk in stream:
|
||||
if chunk.choices and len(chunk.choices) > 0:
|
||||
delta = chunk.choices[0].delta
|
||||
if delta and delta.content:
|
||||
yield delta.content
|
||||
except Exception as e:
|
||||
logger.error(f"流式请求失败: {str(e)}")
|
||||
raise e
|
||||
|
||||
def stream_invoke_to_string(self, system_prompt: str, user_prompt: str, **kwargs) -> str:
|
||||
"""
|
||||
流式调用LLM并安全地拼接为完整字符串(避免UTF-8多字节字符截断)
|
||||
|
||||
Args:
|
||||
system_prompt: 系统提示词
|
||||
user_prompt: 用户提示词
|
||||
**kwargs: 额外参数(temperature, top_p等)
|
||||
|
||||
Returns:
|
||||
完整的响应字符串
|
||||
"""
|
||||
# 以字节形式收集所有块
|
||||
byte_chunks = []
|
||||
for chunk in self.stream_invoke(system_prompt, user_prompt, **kwargs):
|
||||
byte_chunks.append(chunk.encode('utf-8'))
|
||||
|
||||
# 拼接所有字节,然后一次性解码
|
||||
if byte_chunks:
|
||||
return b''.join(byte_chunks).decode('utf-8', errors='replace')
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def validate_response(response: Optional[str]) -> str:
|
||||
if response is None:
|
||||
|
||||
@@ -68,8 +68,8 @@ class ReportFormattingNode(BaseNode):
|
||||
|
||||
logger.info("正在格式化最终报告")
|
||||
|
||||
# 调用LLM生成Markdown格式
|
||||
response = self.llm_client.invoke(
|
||||
# 调用LLM生成Markdown格式(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(
|
||||
SYSTEM_PROMPT_REPORT_FORMATTING,
|
||||
message,
|
||||
)
|
||||
|
||||
@@ -52,7 +52,7 @@ class ReportStructureNode(StateMutationNode):
|
||||
logger.info(f"正在为查询生成报告结构: {self.query}")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_REPORT_STRUCTURE, self.query)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_REPORT_STRUCTURE, self.query)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
|
||||
@@ -66,7 +66,7 @@ class FirstSearchNode(BaseNode):
|
||||
logger.info("正在生成首次搜索查询")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_FIRST_SEARCH, message)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_FIRST_SEARCH, message)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
@@ -201,7 +201,7 @@ class ReflectionNode(BaseNode):
|
||||
logger.info("正在进行反思并生成新搜索查询")
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_REFLECTION, message)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_REFLECTION, message)
|
||||
|
||||
# 处理响应
|
||||
processed_response = self.process_output(response)
|
||||
|
||||
@@ -99,8 +99,8 @@ class FirstSummaryNode(StateMutationNode):
|
||||
|
||||
logger.info("正在生成首次段落总结")
|
||||
|
||||
# 调用LLM生成总结
|
||||
response = self.llm_client.invoke(
|
||||
# 调用LLM生成总结(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(
|
||||
SYSTEM_PROMPT_FIRST_SUMMARY,
|
||||
message,
|
||||
)
|
||||
@@ -267,8 +267,8 @@ class ReflectionSummaryNode(StateMutationNode):
|
||||
|
||||
logger.info("正在生成反思总结")
|
||||
|
||||
# 调用LLM生成总结
|
||||
response = self.llm_client.invoke(
|
||||
# 调用LLM生成总结(流式,安全拼接UTF-8)
|
||||
response = self.llm_client.stream_invoke_to_string(
|
||||
SYSTEM_PROMPT_REFLECTION_SUMMARY,
|
||||
message,
|
||||
)
|
||||
|
||||
@@ -4,7 +4,8 @@ Unified OpenAI-compatible LLM client for the Report Engine, with retry support.
|
||||
|
||||
import os
|
||||
import sys
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any, Dict, Optional, Generator
|
||||
from loguru import logger
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
@@ -75,6 +76,70 @@ class LLMClient:
|
||||
return self.validate_response(response.choices[0].message.content)
|
||||
return ""
|
||||
|
||||
@with_retry(LLM_RETRY_CONFIG)
|
||||
def stream_invoke(self, system_prompt: str, user_prompt: str, **kwargs) -> Generator[str, None, None]:
|
||||
"""
|
||||
流式调用LLM,逐步返回响应内容
|
||||
|
||||
Args:
|
||||
system_prompt: 系统提示词
|
||||
user_prompt: 用户提示词
|
||||
**kwargs: 额外参数(temperature, top_p等)
|
||||
|
||||
Yields:
|
||||
响应文本块(str)
|
||||
"""
|
||||
messages = [
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": user_prompt},
|
||||
]
|
||||
|
||||
allowed_keys = {"temperature", "top_p", "presence_penalty", "frequency_penalty"}
|
||||
extra_params = {key: value for key, value in kwargs.items() if key in allowed_keys and value is not None}
|
||||
# 强制使用流式
|
||||
extra_params["stream"] = True
|
||||
|
||||
timeout = kwargs.pop("timeout", self.timeout)
|
||||
|
||||
try:
|
||||
stream = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=messages,
|
||||
timeout=timeout,
|
||||
**extra_params,
|
||||
)
|
||||
|
||||
for chunk in stream:
|
||||
if chunk.choices and len(chunk.choices) > 0:
|
||||
delta = chunk.choices[0].delta
|
||||
if delta and delta.content:
|
||||
yield delta.content
|
||||
except Exception as e:
|
||||
logger.error(f"流式请求失败: {str(e)}")
|
||||
raise e
|
||||
|
||||
def stream_invoke_to_string(self, system_prompt: str, user_prompt: str, **kwargs) -> str:
|
||||
"""
|
||||
流式调用LLM并安全地拼接为完整字符串(避免UTF-8多字节字符截断)
|
||||
|
||||
Args:
|
||||
system_prompt: 系统提示词
|
||||
user_prompt: 用户提示词
|
||||
**kwargs: 额外参数(temperature, top_p等)
|
||||
|
||||
Returns:
|
||||
完整的响应字符串
|
||||
"""
|
||||
# 以字节形式收集所有块
|
||||
byte_chunks = []
|
||||
for chunk in self.stream_invoke(system_prompt, user_prompt, **kwargs):
|
||||
byte_chunks.append(chunk.encode('utf-8'))
|
||||
|
||||
# 拼接所有字节,然后一次性解码
|
||||
if byte_chunks:
|
||||
return b''.join(byte_chunks).decode('utf-8', errors='replace')
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def validate_response(response: Optional[str]) -> str:
|
||||
if response is None:
|
||||
|
||||
@@ -60,7 +60,7 @@ class HTMLGenerationNode(StateMutationNode):
|
||||
message = json.dumps(llm_input, ensure_ascii=False, indent=2)
|
||||
|
||||
# 调用LLM生成HTML
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_HTML_GENERATION, message)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_HTML_GENERATION, message)
|
||||
|
||||
# 处理响应(简化版)
|
||||
processed_response = self.process_output(response)
|
||||
|
||||
@@ -115,7 +115,7 @@ class TemplateSelectionNode(BaseNode):
|
||||
请根据查询内容、报告内容和论坛日志的具体情况,选择最合适的模板。"""
|
||||
|
||||
# 调用LLM
|
||||
response = self.llm_client.invoke(SYSTEM_PROMPT_TEMPLATE_SELECTION, user_message)
|
||||
response = self.llm_client.stream_invoke_to_string(SYSTEM_PROMPT_TEMPLATE_SELECTION, user_message)
|
||||
|
||||
# 检查响应是否为空
|
||||
if not response or not response.strip():
|
||||
|
||||
@@ -6,10 +6,7 @@ Forum日志读取工具
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Optional, List, Dict
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
from loguru import logger
|
||||
|
||||
def get_latest_host_speech(log_dir: str = "logs") -> Optional[str]:
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user