Merge pull request #99 from LaansDole/main

Feat: LM Studio integration example and uv implementation
This commit is contained in:
zrguo
2025-09-22 10:21:59 +08:00
committed by GitHub
5 changed files with 5196 additions and 6 deletions

View File

@@ -21,6 +21,7 @@
<a href="https://github.com/HKUDS/RAG-Anything/stargazers"><img src='https://img.shields.io/github/stars/HKUDS/RAG-Anything?color=00d9ff&style=for-the-badge&logo=star&logoColor=white&labelColor=1a1a2e' /></a>
<img src="https://img.shields.io/badge/🐍Python-3.10-4ecdc4?style=for-the-badge&logo=python&logoColor=white&labelColor=1a1a2e">
<a href="https://pypi.org/project/raganything/"><img src="https://img.shields.io/pypi/v/raganything.svg?style=for-the-badge&logo=pypi&logoColor=white&labelColor=1a1a2e&color=ff6b6b"></a>
<a href="https://github.com/astral-sh/uv"><img src="https://img.shields.io/badge/⚡uv-Ready-ff6b6b?style=for-the-badge&logo=python&logoColor=white&labelColor=1a1a2e"></a>
</p>
<p>
<a href="https://discord.gg/yF2MmDJyGJ"><img src="https://img.shields.io/badge/💬Discord-Community-7289da?style=for-the-badge&logo=discord&logoColor=white&labelColor=1a1a2e"></a>
@@ -245,14 +246,26 @@ pip install 'raganything[image,text]' # Multiple features
```
#### Option 2: Install from Source
```bash
# Install uv (if not already installed)
curl -LsSf https://astral.sh/uv/install.sh | sh
# Clone and setup the project with uv
git clone https://github.com/HKUDS/RAG-Anything.git
cd RAG-Anything
pip install -e .
# With optional dependencies
pip install -e '.[all]'
# Install the package and dependencies in a virtual environment
uv sync
# If you encounter network timeouts (especially for opencv packages):
# UV_HTTP_TIMEOUT=120 uv sync
# Run commands directly with uv (recommended approach)
uv run python examples/raganything_example.py --help
# Install with optional dependencies
uv sync --extra image --extra text # Specific extras
uv sync --all-extras # All optional features
```
#### Optional Dependencies

View File

@@ -103,7 +103,7 @@ MAX_ASYNC=4
### MAX_TOKENS: max tokens send to LLM for entity relation summaries (less than context size of the model)
### MAX_TOKENS: set as num_ctx option for Ollama by API Server
MAX_TOKENS=32768
### LLM Binding type: openai, ollama, lollms, azure_openai
### LLM Binding type: openai, ollama, lollms, azure_openai, lmstudio
LLM_BINDING=openai
LLM_MODEL=gpt-4o
LLM_BINDING_HOST=https://api.openai.com/v1
@@ -113,7 +113,7 @@ LLM_BINDING_API_KEY=your_api_key
# AZURE_OPENAI_DEPLOYMENT=gpt-4o
### Embedding Configuration
### Embedding Binding type: openai, ollama, lollms, azure_openai
### Embedding Binding type: openai, ollama, lollms, azure_openai, lmstudio
EMBEDDING_BINDING=ollama
EMBEDDING_MODEL=bge-m3:latest
EMBEDDING_DIM=1024

View File

@@ -0,0 +1,320 @@
"""
LM Studio Integration Example with RAG-Anything
This example demonstrates how to integrate LM Studio with RAG-Anything for local
text document processing and querying.
Requirements:
- LM Studio running locally with server enabled
- OpenAI Python package: pip install openai
- RAG-Anything installed: pip install raganything
Environment Setup:
Create a .env file with:
LLM_BINDING=lmstudio
LLM_MODEL=openai/gpt-oss-20b
LLM_BINDING_HOST=http://localhost:1234/v1
LLM_BINDING_API_KEY=lm-studio
EMBEDDING_BINDING=lmstudio
EMBEDDING_MODEL=text-embedding-nomic-embed-text-v1.5
EMBEDDING_BINDING_HOST=http://localhost:1234/v1
EMBEDDING_BINDING_API_KEY=lm-studio
"""
import os
import uuid
import asyncio
from typing import List, Dict, Optional
from dotenv import load_dotenv
from openai import AsyncOpenAI
# Load environment variables
load_dotenv()
# RAG-Anything imports
from raganything import RAGAnything, RAGAnythingConfig
from lightrag.utils import EmbeddingFunc
from lightrag.llm.openai import openai_complete_if_cache
LM_BASE_URL = os.getenv('LLM_BINDING_HOST', 'http://localhost:1234/v1')
LM_API_KEY = os.getenv('LLM_BINDING_API_KEY', 'lm-studio')
LM_MODEL_NAME = os.getenv('LLM_MODEL', 'openai/gpt-oss-20b')
LM_EMBED_MODEL = os.getenv('EMBEDDING_MODEL', 'text-embedding-nomic-embed-text-v1.5')
async def lmstudio_llm_model_func(prompt: str, system_prompt: Optional[str] = None,
history_messages: List[Dict] = None, **kwargs) -> str:
"""Top-level LLM function for LightRAG (pickle-safe)."""
return await openai_complete_if_cache(
model=LM_MODEL_NAME,
prompt=prompt,
system_prompt=system_prompt,
history_messages=history_messages or [],
base_url=LM_BASE_URL,
api_key=LM_API_KEY,
**kwargs,
)
async def lmstudio_embedding_async(texts: List[str]) -> List[List[float]]:
"""Top-level embedding function for LightRAG (pickle-safe)."""
from lightrag.llm.openai import openai_embed
embeddings = await openai_embed(
texts=texts,
model=LM_EMBED_MODEL,
base_url=LM_BASE_URL,
api_key=LM_API_KEY,
)
return embeddings.tolist()
class LMStudioRAGIntegration:
"""Integration class for LM Studio with RAG-Anything."""
def __init__(self):
# LM Studio configuration using standard LLM_BINDING variables
self.base_url = os.getenv('LLM_BINDING_HOST', 'http://localhost:1234/v1')
self.api_key = os.getenv('LLM_BINDING_API_KEY', 'lm-studio')
self.model_name = os.getenv('LLM_MODEL', 'openai/gpt-oss-20b')
self.embedding_model = os.getenv('EMBEDDING_MODEL', 'text-embedding-nomic-embed-text-v1.5')
# RAG-Anything configuration
# Use a fresh working directory each run to avoid legacy doc_status schema conflicts
self.config = RAGAnythingConfig(
working_dir=f"./rag_storage_lmstudio/{uuid.uuid4()}",
parser="mineru",
parse_method="auto",
enable_image_processing=False,
enable_table_processing=True,
enable_equation_processing=True,
)
print(f"📁 Using working_dir: {self.config.working_dir}")
self.rag = None
async def test_connection(self) -> bool:
"""Test LM Studio connection."""
try:
print(f"🔌 Testing LM Studio connection at: {self.base_url}")
client = AsyncOpenAI(base_url=self.base_url, api_key=self.api_key)
models = await client.models.list()
print(f"✅ Connected successfully! Found {len(models.data)} models")
# Show available models
print("📊 Available models:")
for i, model in enumerate(models.data[:5]):
marker = "🎯" if model.id == self.model_name else " "
print(f"{marker} {i+1}. {model.id}")
if len(models.data) > 5:
print(f" ... and {len(models.data) - 5} more models")
return True
except Exception as e:
print(f"❌ Connection failed: {str(e)}")
print("\n💡 Troubleshooting tips:")
print("1. Ensure LM Studio is running")
print("2. Start the local server in LM Studio")
print("3. Load a model or enable just-in-time loading")
print(f"4. Verify server address: {self.base_url}")
return False
finally:
try:
await client.close()
except Exception:
pass
async def test_chat_completion(self) -> bool:
"""Test basic chat functionality."""
try:
print(f"💬 Testing chat with model: {self.model_name}")
client = AsyncOpenAI(base_url=self.base_url, api_key=self.api_key)
response = await client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Hello! Please confirm you're working and tell me your capabilities."}
],
max_tokens=100,
temperature=0.7
)
result = response.choices[0].message.content.strip()
print(f"✅ Chat test successful!")
print(f"Response: {result}")
return True
except Exception as e:
print(f"❌ Chat test failed: {str(e)}")
return False
finally:
try:
await client.close()
except Exception:
pass
# Deprecated factory helpers removed to reduce redundancy
def embedding_func_factory(self):
"""Create a completely serializable embedding function."""
return EmbeddingFunc(
embedding_dim=768, # nomic-embed-text-v1.5 default dimension
max_token_size=8192, # nomic-embed-text-v1.5 context length
func=lmstudio_embedding_async,
)
async def initialize_rag(self):
"""Initialize RAG-Anything with LM Studio functions."""
print("Initializing RAG-Anything with LM Studio...")
try:
self.rag = RAGAnything(
config=self.config,
llm_model_func=lmstudio_llm_model_func,
embedding_func=self.embedding_func_factory(),
)
# Compatibility: avoid writing unknown field 'multimodal_processed' to LightRAG doc_status
# Older LightRAG versions may not accept this extra field in DocProcessingStatus
async def _noop_mark_multimodal(doc_id: str):
return None
self.rag._mark_multimodal_processing_complete = _noop_mark_multimodal
print("✅ RAG-Anything initialized successfully!")
return True
except Exception as e:
print(f"❌ RAG initialization failed: {str(e)}")
return False
async def process_document_example(self, file_path: str):
"""Example: Process a document with LM Studio backend."""
if not self.rag:
print("❌ RAG not initialized. Call initialize_rag() first.")
return
try:
print(f"📄 Processing document: {file_path}")
await self.rag.process_document_complete(
file_path=file_path,
output_dir="./output_lmstudio",
parse_method="auto",
display_stats=True
)
print("✅ Document processing completed!")
except Exception as e:
print(f"❌ Document processing failed: {str(e)}")
async def query_examples(self):
"""Example queries with different modes."""
if not self.rag:
print("❌ RAG not initialized. Call initialize_rag() first.")
return
# Example queries
queries = [
("What are the main topics in the processed documents?", "hybrid"),
("Summarize any tables or data found in the documents", "local"),
("What images or figures are mentioned?", "global"),
]
print("\n🔍 Running example queries...")
for query, mode in queries:
try:
print(f"\nQuery ({mode}): {query}")
result = await self.rag.aquery(query, mode=mode)
print(f"Answer: {result[:200]}...")
except Exception as e:
print(f"❌ Query failed: {str(e)}")
async def simple_query_example(self):
"""Example basic text query with sample content."""
if not self.rag:
print("❌ RAG not initialized")
return
try:
print("\nAdding sample content for testing...")
# Create content list in the format expected by RAGAnything
content_list = [
{
"type": "text",
"text": """LM Studio Integration with RAG-Anything
This integration demonstrates how to connect LM Studio's local AI models with RAG-Anything's document processing capabilities. The system uses:
- LM Studio for local LLM inference
- nomic-embed-text-v1.5 for embeddings (768 dimensions)
- RAG-Anything for document processing and retrieval
Key benefits include:
- Privacy: All processing happens locally
- Performance: Direct API access to local models
- Flexibility: Support for various document formats
- Cost-effective: No external API usage""",
"page_idx": 0
}
]
# Insert the content list using the correct method
await self.rag.insert_content_list(
content_list=content_list,
file_path="lmstudio_integration_demo.txt",
# Use a unique doc_id to avoid collisions and doc_status reuse across runs
doc_id=f"demo-content-{uuid.uuid4()}",
display_stats=True
)
print("✅ Sample content added to knowledge base")
print("\nTesting basic text query...")
# Simple text query example
result = await self.rag.aquery(
"What are the key benefits of this LM Studio integration?",
mode="hybrid"
)
print(f"✅ Query result: {result[:300]}...")
except Exception as e:
print(f"❌ Query failed: {str(e)}")
async def main():
"""Main example function."""
print("=" * 70)
print("LM Studio + RAG-Anything Integration Example")
print("=" * 70)
# Initialize integration
integration = LMStudioRAGIntegration()
# Test connection
if not await integration.test_connection():
return False
print()
if not await integration.test_chat_completion():
return False
# Initialize RAG
print("\n" + "" * 50)
if not await integration.initialize_rag():
return False
# Example document processing (uncomment and provide a real file path)
# await integration.process_document_example("path/to/your/document.pdf")
# Example queries (uncomment after processing documents)
# await integration.query_examples()
# Example basic query
await integration.simple_query_example()
print("\n" + "=" * 70)
print("Integration example completed successfully!")
print("=" * 70)
return True
if __name__ == "__main__":
print("🚀 Starting LM Studio integration example...")
success = asyncio.run(main())
exit(0 if success else 1)

63
pyproject.toml Normal file
View File

@@ -0,0 +1,63 @@
[build-system]
requires = ["setuptools>=45", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "raganything"
version = "1.2.7"
description = "RAGAnything: All-in-One RAG System"
readme = "README.md"
license = { text = "MIT" }
authors = [
{ name = "Zirui Guo" }
]
classifiers = [
"Development Status :: 4 - Beta",
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Intended Audience :: Developers",
"Topic :: Software Development :: Libraries :: Python Modules",
]
requires-python = ">=3.10"
dependencies = [
"huggingface_hub",
"lightrag-hku",
"mineru[core]",
"tqdm",
]
[project.optional-dependencies]
image = ["Pillow>=10.0.0"]
text = ["reportlab>=4.0.0"]
office = [] # Requires LibreOffice (external program)
all = ["Pillow>=10.0.0", "reportlab>=4.0.0"]
markdown = [
"markdown>=3.4.0",
"weasyprint>=60.0",
"pygments>=2.10.0",
]
[project.urls]
Homepage = "https://github.com/HKUDS/RAG-Anything"
Documentation = "https://github.com/HKUDS/RAG-Anything"
Repository = "https://github.com/HKUDS/RAG-Anything"
Issues = "https://github.com/HKUDS/RAG-Anything/issues"
[tool.uv]
dev-dependencies = [
"pytest>=6.0",
"pytest-asyncio",
"black",
"isort",
"flake8",
"mypy",
"openai",
"python-dotenv",
]
[tool.setuptools.packages.find]
exclude = ["tests*", "docs*"]
[tool.setuptools]
include-package-data = true

4794
uv.lock generated Normal file

File diff suppressed because it is too large Load Diff