chores: refactor examples
This commit is contained in:
@@ -245,13 +245,16 @@ async def demo_insert_content_list(
|
||||
else:
|
||||
return llm_model_func(prompt, system_prompt, history_messages, **kwargs)
|
||||
|
||||
# Define embedding function
|
||||
# Define embedding function - using environment variables for configuration
|
||||
embedding_dim = int(os.getenv("EMBEDDING_DIM", "3072"))
|
||||
embedding_model = os.getenv("EMBEDDING_MODEL", "text-embedding-3-large")
|
||||
|
||||
embedding_func = EmbeddingFunc(
|
||||
embedding_dim=3072,
|
||||
embedding_dim=embedding_dim,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: openai_embed(
|
||||
texts,
|
||||
model="text-embedding-3-large",
|
||||
model=embedding_model,
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
),
|
||||
|
||||
@@ -164,14 +164,20 @@ async def process_equation_example(lightrag: LightRAG, llm_model_func):
|
||||
|
||||
|
||||
async def initialize_rag(api_key: str, base_url: str = None):
|
||||
# Use environment variables for embedding configuration
|
||||
import os
|
||||
|
||||
embedding_dim = int(os.getenv("EMBEDDING_DIM", "3072"))
|
||||
embedding_model = os.getenv("EMBEDDING_MODEL", "text-embedding-3-large")
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=3072,
|
||||
embedding_dim=embedding_dim,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: openai_embed(
|
||||
texts,
|
||||
model="text-embedding-3-large",
|
||||
model=embedding_model,
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
),
|
||||
|
||||
@@ -182,13 +182,16 @@ async def process_with_rag(
|
||||
else:
|
||||
return llm_model_func(prompt, system_prompt, history_messages, **kwargs)
|
||||
|
||||
# Define embedding function
|
||||
# Define embedding function - using environment variables for configuration
|
||||
embedding_dim = int(os.getenv("EMBEDDING_DIM", "3072"))
|
||||
embedding_model = os.getenv("EMBEDDING_MODEL", "text-embedding-3-large")
|
||||
|
||||
embedding_func = EmbeddingFunc(
|
||||
embedding_dim=3072,
|
||||
embedding_dim=embedding_dim,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: openai_embed(
|
||||
texts,
|
||||
model="text-embedding-3-large",
|
||||
model=embedding_model,
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
),
|
||||
|
||||
Reference in New Issue
Block a user